如图,在△abc中,be,cf是△abc的两条高且相交于点d,∠a=60°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:16:52
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
证明延长ED,使DG=DE,连接CG、FG易得△DEB≌△GCD∴BE=CG∵DE=DG,DF=DF,角EFD=角FDG=90度∴FG=EF∵CF+DG>FG(两边之和大于第三边)GF=BE,FG=E
∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°∵∠A=∠A∴△ABE∽△ACF∴AE/AF=AB/AC∴AE/AB=AF/AC∵∠A=∠A∴△AEF∽△ABC
作FG//AB交BC延长线于G则∠G=∠B而由AB=AC知:∠B=∠ACB而∠ACB=∠GCF所以,∠G=∠GCF,所以,CF=GF而,CF=BE所以,BE=GF∠G=∠B∠BDE=∠GDF所以,△B
分析:(1)由于BE⊥AC,CF⊥AB,可得∠ABE=∠ACF,又有对应边的关系,进而得出△ABP≌△QCA,即可得出结论.(2)在(1)的基础上,证明∠PAQ=90°即可.证明:(1)∵BE⊥AC,
证明:(1)因为BE,CF分别是ACAB两边上的高,那么有∠BAC+∠ABD=90°=∠BAC+∠GCA又有BD=AC,CG=AB所以有△ACG≌△DBA所以有AD=AG(2)由于△ACG≌△DBA,
我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.
在rt△EBC中∠ACB=54°所以∠EBC=36°在rt△FCB中,∠ABC=66°所以∠FCB=24°所以∠BHC=180°-∠EBC-∠FCB=120°
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
∵BE=CF∴BE+EC=FC+CE∴BC=EF在△ABC与△DEF中AB=DEAC=DFBC=EF∴△ABC与全等于△DEF
在BC边上取点D,使BF=BD,连结OD.∵BE是角平分线,BF=BD,BO是公共边,∴△BFO≌△BDO→∠FOB=∠DOB=∠COD-->OF=OD∵∠A=60°∠FOB=∠CBO+∠BCO,BE
证明:连接EF.∵E、F分别是AC、AB的中点,∴EF‖BC,EF=1/2BC.(1)是(2)平行四边形
∵BE平分∠ABC,CF平分∠ACB,∴点P到AB、BC、AC的距离相等,设为h,∴S△ABC=12AC•BC=12(AB+BC+AC)•h,即12×4×3=12(5+3+4)•h,解得h=1,∴△C
△APQ是等腰三角形∵△ABC为等腰三角形∴AB=AC,∠ABC=∠ACB∵CE,BF是高∴∠BEC=∠CFB=90º在△BEC和△CFB中∠ABC=∠ACB∠BEC=∠CFB=90
(1)AD是△ABC的中线...................1分理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°...1分又∵BE=CF,∠BDE=∠CFD ∴△BDE≌△CFD(
证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以
∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线再问:可是我证明了两次再问:我证明完三角形BDC全等于三角形FPC
∵BE⊥AD,CF⊥AD∴∠E=∠OFC∠BOE=∠COF又∵BE=CF∴△BOE≌△COF∴BO=OC∴AD是△ABC的中线
BD=CD∵BE⊥AD于E,CF⊥AD于F∴角BEF=角CFE在△BDE与△CDF中角BEF=角CFE角BDE=角CDFCF=BE∴△BDE≌△CDF∴BD=CD不会还可以再问我,希望采纳,O(∩_∩