如图,在△ABC中,过A点作AE,AF分别垂直于∠ACB及其

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:32:45
如图,在△ABC中,过A点作AE,AF分别垂直于∠ACB及其
(2013•海淀区二模)如图1,在△ABC中,AB=AC,∠ABC=α.过点A作BC的平行线与∠ABC的平分线交于点D,

(1)证明:∵BD平分∠ABC,∴∠1=∠2.∵AD∥BC,∴∠2=∠3.∴∠1=∠3.∴AB=AD.∵AB=AC,∴AC=AD.(2)①证明:过A作AH⊥BC于点H.由题意可得:∠AHB=90°.∵

如图,在△ABC中,∠A的平分线与BC的中垂线交于点D,过点D作DE⊥AB于点E,DF⊥AC的延长线于点F.试说明BE=

做辅助线,连接BD,CD,因为BC的中垂线就是DG,所以BD=CD,∠BAD=∠DAF,∠DEA=∠DFA=90°,因此根据角边角定理得出△ADE和△ADF全等,所以DE=DF,又根据勾股定理(也可以

初三几何题速度!如图在△ABC中,AB⊥BC于D,AB=AC,过点B作射线BP交AD、AC分别于E、F,与过C点平行于A

(1)证明:连接EC因为AB=AC,AD是BC上的中线所以根据“三线合一”性质得AD⊥BC所以AD垂直平分BC所以EB=EC因为AB=AC,AE=AE所以△ABE≌△ACE(SSS)所以∠ACE=∠A

如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC.BD相交于点G,过点A作AE∥DB交

(1)∵∠ABC=∠BAD=90°AD=BC∴在与Rt△ABC与Rt△ABD中AD=BCAB=AB∴Rt△ABC≡Rt△ABD(HL)(2)∵AE∥DBBF∥CA∴四边形AHBG是平行四边形又∴∠CA

如图,已知:在△ABC中,∠ABC的平分线与AC边的垂直平分线相交于点N,过点N作ND⊥AB于D,NE⊥BC于E,求证A

N∈∠B平分线,ND=NE.N∈AC边的垂直平分线,NA=NC,又∠ADN=∠CEN=90º∴Rt⊿ADN≌Rt⊿CEN(斜边,腰),∴AD=CE

如图,已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线

∵BA⊥AM,MN⊥AC,∴∠BAM=ANM=90°∴∠PAQ+∠MAN=∠MAN+∠AMN=90°∴∠PAQ=∠AMN∵PQ⊥AB,∴∠APQ=90°=∠ANM∴AQ=MN,∴△PQA≌△ANM∴A

如图,已知在等腰三角形ABC中,角A=角B=30度,过点C作CD垂直于AC交AB于点D

1、半径√3,则AO=DO=BD=CD=√3BC=3PDB∽COB则PD/OC=BD/BO=BP/BC所以1/2=BP/3=DP/√3BP=3/2

已知如图在等边三角形ABC中,过点A,B,C分别作AB,BC,AC的垂线

∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌⊿CFE≌

如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作MN∥BC.若BC=24,求△ABC的周长与△A

因为MN∥BC,所以∠OBC=∠MOB=∠MBO,那么MB=MO因为MN∥BC,所以∠OCB=∠MOC=∠MOO,那么NC=NO△ABC的周长=AM+AN+MB+NC+BC△AMN的周长=AM+AN+

如图,在△ABC中,已知∠ABC=90°,AC=5,BC=4,过点A作直线L平行于BC,折叠三角形纸片ABC,使直角顶点

如图,过点C作CD⊥直线l交l于点D,则四边形ABCD为矩形,通过操作知,当折叠过点A时,即点M与点A重合时,AP的值最大,此时记为点P1,易证四边形ABNP1为正方形,由于AC=5,BC=4,故AB

如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使A

证明:∵点E为AB中点,∴AE=EB又∵∠ACB=90°,∴CE=AE=EB,又∵AF=CE,∴AF=AE,∴∠3=∠F,又EB=EC,ED⊥BC,∴∠1=∠2(三线合一),又∠2=∠3,∴∠1=∠F

如图,在Rt△ABC中,∠C=90°,AC=BC,BE平分∠ABC交AC于E,过A作AD⊥BE的延长线交于点D,求证:A

证明:延长AD、BC交于F点,如图,∵BD⊥AD且BD平分∠ABC,∴AD=FD,∵∠FAC+∠AED=90°,∠CBE+∠CEB=90°,∴∠FAC=∠CBE,又∵∠FCA=∠ECB=90°,AC=

已知:如图,在等边三角形ABC中,过点A、B、C分别作AB、BC、AC的垂线,两两相交于点D、E、F.

这是步骤:∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌

如图 在三角形abc中 角平分线ad be cf相交于点h 过点a作ag垂直于be 垂足为g

等于由题可知:∠BAD+∠CAD+∠EAG+∠ABG=90°因为2(∠ABG+∠BAD+∠ACF)=180°所以∠BAD+∠CAD+∠EAG+∠ABG=∠BAD+∠ACF+∠ABG即∠CAD+∠EAG

如图,在等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合)过点P作PE⊥BC,垂足

(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°AB=AC=BC=2∵PE⊥BC于E∴∠PEB=90°∴△BPE是直角三角形∴BP=2BE同理可证:EC=2FCAF=2AQ∵BP=xAQ=y∴B

如图,在△ABC中,∠BAC=90°,AB=AC,过点A在△ABC内引一直线l,分别过点B、C作直线l的垂线,垂足分别为

旋转前BD=DE+CE∵AE⊥CE∴∠AEC=∠BAC=90°∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE在△ABD和△CAE中∠AEC=∠BAC=90°AB=CA∠B

如图,三角形ABC中,<A=<B,点F在AC上,过点FD作FD⊥BC于点D,过点D作DE⊥AB于点E,若<AFD=158

由FD⊥BC知∠CDF=90°由DE⊥AB知∠AED=90°因为∠AFD=158°=∠C+∠CDF=∠C+90°所以∠C=68°又由∠A=∠B得∠A=(180°-∠C)/2=56°由四边形AEDF内角

如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙

(1)连结DO,则A0=DO,所以∠A=∠ADO.因为∠A+∠CDB=90°,所以∠ADO+∠CDB=90°所以∠ODB=90°,即直线BD与⊙O相切.(2)连结DE,由题易得△ADE与△ACB相似,

如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;

(1)证明:连接AO,则AO⊥PA,∠AOC=2∠B=120°,∴∠AOP=60°,∴∠P=30°,又∵OA=OC,∴∠ACP=30°,∴∠P=∠ACP,∴AP=AC.(2)在Rt△PAO中,∠P=3