如图,在△abc中AD平分∠BAC,求证:S△ABD:S△ACD=AB:AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:20:23
如图,在△abc中AD平分∠BAC,求证:S△ABD:S△ACD=AB:AC
如图,已知在△ABC中,AD平分角BAC,EF垂直平分AD,求证角B=角CAE

∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD;∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD-∠CAD=∠C

如图,在△ABC中,AD平分∠BAC,CE⊥AB于E(AE

∵CD=DF∴∠DCF=∠DFC∵∠DFC=∠AFE∴∠DCF=∠AFE∵CE⊥AB∴∠AFE+∠BAD=90°∠EBC+∠DCF=90°∴∠BAD=∠EBC∴BD=AD

如图,在△ABC中,AD平分∠BAC,CD⊥AD于D,求证∠ACD>∠B

延长CD交AB于点E∵AD平分∠BAC∴∠BAD=∠CAD∵CD⊥AD∴∠ADE=ADC∵AD=AD∴⊿ADE≌⊿ADC﹙ASA﹚∴∠AED=∠ACD∵∠AED是△BCE的外角∴∠AED>∠B即∠AC

如图.在△ABC中.BD平分∠ABC.

解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(

如图,在△ABC中,AD平分∠BAC,CE⊥AD于E.

证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A

如图,在△ABC中,AD平分

因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端

.如图,已知△ABC中,AD平分∠BAC,EF垂直平分AD 求证:∠B=∠CAE

EF垂直平分AD所以AE=ED所以在三角形EAD中,∠EDA=∠EAD又∠EAD=∠EAC+∠CAD,∠EDC=∠B+∠DAB所以∠EAC+∠CAD=∠B+∠DAB又AD平分∠BAC所以∠DAB=∠C

如图,在△ABC中,AB=AC,AD平分∠BAC.

证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.

如图,在△ABC中,∠B>∠C,AD⊥BC,AE平分∠BAC,求证:∠DAE+二分之一(∠B-∠C)

证明:∵∠B=90°-∠BAD∠C=90°-∠CAE-∠DAE∴∠B-∠C=∠CAE-∠BAD+∠DAE∵AE平分∠BAC∴∠CAE=∠BAE∴∠B-∠C=∠BAE-∠BAD+∠DAE∵∠BAE-∠B

如图,在△ABC中,∠B=90°,AD平分∠CAE,CD平分∠ACF,AD,CD交于点D.如图所示,若∠b=90°,求证

∠EAC=180°-∠BAC;∠ACE=180°-∠BCA;∠ACE+∠EAC=180°-∠BAC+180°-∠BCA=360°-∠BCA-∠BAC;因为∠B=90°,故∠BCA+∠BAC=90°;所

如图,在△ABC中,AC=BC,∠C=90°,AD平分∠CAB,过B作BE⊥AD,交AD的延长线于E,又已知AD=6cm

延长BE、AC交于F点,如图,∵BE⊥EA,∴∠AEF=∠AEB=90°.∵AD平分∠BAC,∴∠FAE=∠BAE,∴∠F=∠ABE,∴AF=AB,∵BE⊥EA,∴BE=EF=12BF,∵△ABC中,

已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥BC.

证明:∵AD平分∠EAC,∴∠EAD=12∠EAC.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=12∠EAC.∴∠EAD=∠B.所以AD∥BC.

如图,△ABC中,AB大于AC,AD平分∠BAC,E点在AD上.求证:∠ABE

朋友这样做由三角形的正弦定律知sin∠AEB/AB=sin∠AEC/AC而AB>AC所以sin∠AEB>sin∠AEC因为AD平分∠BAC所以:∠ABE

已知:如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,AB沿AD折叠,点B落在AC上,已知

设AB沿AD折叠点B落在AC上,这一点设为E,设BD=X,则AD=8-X,很容易证明:DE=BD=X,AE=AB=6,则由直角三角形的定理可知:AC=10=AE+CE则CE=4那么CE^2=16=CD

:如图,在△ABC中,AD⊥BC,AE平分∠BAC.

(1)因为角ABC=30°,角ACB=60°,所以角BAC=90°,又因为AE平分角BAC,所以角EAC=45°,AD⊥BC,所以角ADC=90°,角DAC=30°,那么角DAE=45°-30°=15

在△ABC中,AD平分∠BAC,EF垂直平分AD,说明∠B=∠CAE

EF垂直平分AD则AE=DE∠EAD=∠ADE因∠EAD=∠EAC+∠CAD,∠ADE=∠B+∠BAD且∠CAD=∠BAD故∠EAC=∠B

如图,在△ABC中,AB=2AC,AD平分∠BAC,且AD=BD.

证明:作出AB边的高DE交AB于E∵AD=BD∴E为AB的中点,AB=2AE∵AB=2AC∴AE=AC∵AD平分∠BAC∴∠EAD=∠CAD又AE=AC,AD为公共边∴ΔEAD≌ΔCAD∴∠ACD=∠

如图,在△ABC中,∠B=90°,AD平分∠CAE,CD平分∠ACF,AD,CD交于点D,求证∠D=45°

证明:∵AD平分∠CAE,CD平分∠ACF∠CAD+∠ACD=(∠B+∠BCA)/2+(∠B+∠BAC)/2=(∠B+∠BCA+∠B+∠BAC)/2=135°∠D+∠CAD+∠ACD=180°∴∠D=

如图,在△ABC中,AD平分∠BAC,EF垂直平分AD(F在AD上,E在BC延长线上),说明∠B=∠CAE.

∵∠B=∠ADE-∠BAD=∠ADE-∠A/2    ∠CAE=∠DAE-∠DAC=∠DAE-∠A/2∵EF是AD的中垂线∴∠ADE=∠DAE∴∠B=∠CAE