如图,在正方形abcd中,e为ab的中点,d为ad上一点且af=四分之一ad

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:00:11
如图,在正方形abcd中,e为ab的中点,d为ad上一点且af=四分之一ad
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,在正方形ABCD的边长为2,E为线段AB上一点,

1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图4 在正方形ABCD中 AC为对角线 E为AC上一点连接EB ED

证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.又EC=EC,∴△BEC≌△DEC.(2)由(1)可知:△BEC≌△DEC∴∠BEC=∠DEC=1/2∠BED=70°∴∠AE

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别为AB,PB的中点

(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,且E、F、G分别为DB、AD中点,补充如下

“e,f,g分别为BD,AD中点”有三个点怎么只给两条边?题目写清楚再问:噢不好意思少打了一条边是E、F、G分别为DB、DC、AD的中点再答:EF和BC平行,BC属于面VBC,所以EF平行于面vbc因

如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:

(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面

如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

如图,在正方形ABCD-A1B1C1D1中,E,F分别为棱D1D和B1C1的中点,求证

1连接BD交AC于点O,则可知,O是BD的中点.所以EO是三角形BDD1的一条中位线.所以有,EO//BD1因为EO∈平面EAC,DB在平面EAC外,所以,BD1//面EAC2连接B1O,由于B1C=

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

如图,在正方形ABCD-A1B1C1D1中,E,F,M,N分别为棱AB,CC1,C1D1的中点.

连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG