如图,已知o是直线ac上一点,ob是一条射线,od平分角aob

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:16:43
如图,已知o是直线ac上一点,ob是一条射线,od平分角aob
如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

如图,已知O为直线AC上的一点,过点O引三条射线OB OD OE,且OD平分角AOB

1.∵角平分线∴∠BOD=1/2∠AOB,∠BOE=1/2∠BOC∴∠DOE=∠BOD+∠BOE=12/(∠A0B+BOC)=1/2∠AOC=90°2.∵3角EOB等于角EOC,角DOE等于50度∴∠

已知三角形ABC的三个顶点都在圆O上,AB=AC,D是BC上一点,E是直线AD与圆的交点,如图1所示

(1)证明:连接BE,则∠E=∠C;AB=AC,则:∠ABD=∠C=∠E;又∠BAD=∠EAB(公共角相等).则:⊿BAD∽⊿EAB,AD/AB=AB/AE,AB^2=AD*AE.(2)当点D在BC延

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,点C为圆O上一点,且AC平分角PAE,过C作CD⊥PA,垂足D

过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD

如图,已知直线PB交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为

连接OC,过点O作OF⊥AC于F∵CD⊥PA,OF⊥AC∴∠ADC=∠AFO=90∵AC平分∠PAE∴∠PAC=∠OAC∴△ACD∽△AOF∴AF/OF=AD/CD∵CD=2AD∴AD/CD=1/2∴

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为

1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所

如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D

出现DC+DA=6一般首先考虑从几何上构造.但是这个题有更简单的方法.题目给出AE=10,而三角形ACD和AEC相似,设AD=x,DC=y,可以根据相似关系列出xy的一个关系式.结合x+y=6可以列两

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

数学圆和直线如图,已知矩形ABCD中,AB=2,BC=二根号三,O是AC上一点,AO=m,且圆O的半径长为1.求NO.1

过O做OE垂直AB则有三角形相似可得OE/BC=AO/ACAO=m,BC=2√3AC由勾股定理=4所以OE=2√3m/4=√3m/2没有公共点,所以√3m/2>r=1m>2√3/3O在AC上,所以OA

如图所示,已知O为直线AC上一点,

设∠BOE为x∵OD平分∠AOB,∠DOE=60°可得方程 2(60-x)+4x=180    解得x=30∴∠EOC=3x=90°

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A

如图已知AB是圆O的直径C是圆O上一点CD⊥AB求证1∠ACD=∠F 2AC

1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.

(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥