如图,已知□ABCD中,点E,F分别是AB,CD上的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:11:44
ABCD是平行四边形;所以AD平行BC;所以AF平行BC;所以AEF相似于BEC;所以AE:AB=EF:FCE是AB延长线和CF延长线焦点;AE平行CD;所以AEF相似于CFD;所以AF:FD=EF:
证明:∵四边形ABCD是平行四边形∴AB=CD,AB//CD∵AE//CF∴四边形AFCE是平行四边形∴AF=CE∴AB-AF=CD-CE即BF=DE∵BF//DE∴四边形BEDF是平行四边形∴BE/
连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
证明:(1)由菱形ABCD可知:AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(4分)(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BA
证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
因为是正方形所以∠DCA=∠BCA=45°,BC=DC在三角形DCE和三角形BCE中,CE是公共边所以ΔDCE≌ΔBCE(SAS)所以BE=DE
再答:一定对再答:而且很简便再答:望采纳呀
证明:连接BF,DE那么△ABF的面积=1/2平行四边形ABCD的面积(同底等高)△ADE的面积=1/2平行四边形ABCD的面积(同底等高)∴△ABF的面积=△ADE的面积∴1/2AF×BH=1/2A
证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC
证明:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,(3分)又∵DF﹦BE,∴AF﹦CE,(4分)又∵AF∥CE,∴四边形AECF为平行四边形,(6分)∴AC、EF互相平分.
过点A作AG⊥EF垂足为G,并延长角BC与点H,且AH⊥BC由∠ABC=60°,AB=4,则BH=2,AH=2√3由于EG∥BH,所以易证△AEG∽△ABH,则有:AE/AB=AG/AH=EG/BH又
很高兴为您解答∵四边形ABCD是平行四边形∴DE‖FB又∵DF‖BE∴四边形DFBE也是平行四边形∴DB,EF为平行四边形DFBE的对角线∴DB,EF互相平分,即EO=FO
1、∵CD∥AB∴∠ECD=∠EFA(两直线平行,内错角相等)∠DEC=∠AEF(对顶角相等)又ED=EA∴△DEC≌△AEF∴DC=AF而DC=AB∴AB=AF2、由上面△DEC≌△AEF得EC=E
∵ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADE=∠CBF∵AD=BC,∠ADE=∠CBF,DE=BF∴△ADE≌△CBF(SAS)∴AE=CF
解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE