如图,已知△ABC的中线BE,CF交于点O,M,N分别为OB,OC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:07:16
果然是缺了BC的长度这个条件啊.过D向BE做高由于翻折,易得角CDE=角BDE=90度,且DE=DC.又DC=BD,因此DE=BD,即三角形BDE是等腰RT三角形.由此易得BE平行于AD,所以四边形B
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
因为AD为中线所以BD=CD因为角AED=角CEF=90度,角BDE=角CDF所以三角形BED全等于三角形CFD,所以BE=CF也可以用平行证:因为CF垂直于AE,BE垂直于AE,所以CF平行于BE,
(1)(2)(3),相等.
证明;延长FD至G,使DG=DF,连接EG∵BD=DC,∠BDG=∠CDF,DG=DF∴⊿BDG≌⊿CDF(SAS)∴BG=CF∵DE平分∠ADB,DF平分∠ADC∴2∠EDA+2∠ADF=180°∴
1.延长AD至点A',使AD=A'D,连接A'B,A'C,则△A'BC即与△ABC成中心2.A'B=AC=4cm ,AB=6cm ,
(1)中线AD如图所示;(2)△ABD的高BE及△ACD的高CF如图所示.(1)根据三角形的中线的定义,取BC的中点D,连接AD即可;(2)根据三角形的高线的定义作出即可.
证明:∵AB=AC∴∠ABC=∠ACB∵CD、BE是AB、AC边上的中线∴BD=AB/2,CE=AC/2∴BD=CE∵BC=BC∴△BCE≌△CBD(SAS)∴∠CBE=∠BCD∴OB=OC∴等腰△O
我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.
是这样解吗?连接FE∵E,F分别为AC,AB中点∴EF‖BC,EF=1/2BC∴GE/GB=GF/GC=EF/BC=1/2.再问:能再详细一点吗
证明:∵AD是△ABC的中线∴BD=CD又∠BED=∠CFD=90°;∠BDE=∠CDF∴△BDE≌△CDF∴BE=CF又∵∠BED=∠CFD∴BE∥CF综上,BE与CF平行且相等.或∵AD是△ABC
问题呢?没写出来.
选AC中点为E连接BE点,线段BE即为所求,使用圆规以A为圆心,任意取小于AB线段长度的半径画圆,该圆与AB.AC各有一个交点,分别在以这两个在AB.AC线段上的交点为圆心,画圆,连接A点与该2圆交点
证明:连接EF.∵E、F分别是AC、AB的中点,∴EF‖BC,EF=1/2BC.(1)是(2)平行四边形
∵EG‖BC∴△AEG≌△ABC又∵AE:AB=1/2∴AG:AC=1/2即G是AC中点所以DG‖AB∴△CDG≌△CAB∴S△CDG:S△CAB=(CD:CB)²=(1/2)²=
中线平分三角形,所以结果应该是4
看起来不像中线啊!!!!∵BE平行于CF∴∠CFD=∠BED在△BED与△CFD中∠CFD=∠BED(已证)∠CDF=∠BDE(对顶角相等)BE=CF(已知)∴△BED≌△CFD(AAS)∴BD=CD
因为△ABC是等边三角形,所以BD既是中线,有是角平分线,所以∠DBC=30°.而∠ACB=60°,CE=CD,故△DCE是等腰三角形.所以∠DCE=30°,即∠DBC=∠DEC,所以△DBE是等腰三
高应该是AD吧S△ABE=1/2*BE*AD=1/2*3*6=9S△ACE=1/2*CE*AD=1/2*3*6=9
(1)补全图形,如图所示;(2)AF=AG,理由为:在△AFD和△BCD中,AD=BD∠ADF=∠BDCFD=CD,∴△AFD≌△BCD(SAS),∴AF=BC,在△AGE和△CBE中,AE=CE∠A