如图,抛物线y=x² bx c过点A(3,0),B(1,0),交y轴于点C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:42
1.点B为(1,1),点C(2,1),点D(2,4),点E(4,4),所以AB=1,BC=1,所以AB:BC=12.O、B、E在同一直线上,解析式为y=x
∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,1/3x2=3解得x=±3,∴B点坐标为(-3,3),C点坐标为(3,3),∴BC=3-(-3)=6.故答案为6.
抛物线X²=4y即y=1/4x²F(0,1)求导得y'=1/2x那么PQ的斜率k=1/2x0PQ:y-y0=1/2x0(x-x0)令x=0得y=y0-1/2x²0=-y0
(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-
(1)x=0时,y=3y=-4x²+13/2·x+3=0得到x=2、-8/3∴A(0,3)B(2,0)(2)y=-4x²+13/2·x+3=3得到x1=0x2=13/8∴AP=x2
(1)解方程-(1/2)x²+(5/2)x-2=0得:x1=1,x2=4,即A(1,0),B(4,0)对于函数y=-(1/2)x²+(5/2)x-2来说,当x=0时
(1)令y=0,得x2-1=0解得x=±1,令x=0,得y=-1∴A(-1,0),B(1,0),C(0,-1);(2分)(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=45°.∵AP∥C
(1)y=x-3与坐标轴的两个交点为(3,0),(0,-3)设y=a(x+1)(x-3)把点(0,-3)代入得-3=a(-3),a=1y=(x+1)(x-3)所以y=x²-2x-3(2)y=
a=-2即y=-2x2+2再问:可以写一下过程吗再答:A(-1,0)B(1,0)C(0,-a)Yac=-ax-a由平行及B(1,0)得Ybd=-ax+a联立y=a(x2-1)得D(-2,3a)因为面积
联立y=xy=x2−x−3,解得x1=−1y1=−1,x2=3y2=3,所以,A(-1,-1),B(3,3),抛物线的对称轴为直线x=-−12×1=12,∴当-1<x<3时,PQ=x-(x2-x-3)
分析:(1)将x=0,代入抛物线的解析式即可;(2)当b=0时,直线为y=x,解由y=x和y=x2+x-4组成的方程组即可求出B、C的坐标,再利用三角形的面积公式即可求出面积;(3)当b>-4时,△A
1) 分别将x=0、y=0代入y=-3x-3得:  
(1)抛物线与y轴交点为(0,9),所以b=9直线方程为y=-x+9与抛物线方程联立,解得x=0,5所以交点A为(5,4)(2)P点坐标为(3,0),到直线y=-x+9的距离为3√2AB长度为5√2所
答案见图(希望采纳)很高兴为您解答,【华工王师】团队为您答题.请点击下面的【选为满意回答】按钮.
(1)当M=2时代入函数式,Y=X方-4X=X(X-4)所以A点座标为,(4,0)此时P点为(3,1/2),OC:3=4:(4-1/2),得OC=24/7(你也可以先求AP方程再求C点座标)(2)当C
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
分析:考虑到过抛物线y²=4x的焦点F引两条互相垂直的直线AB、CD,利用抛物线的极坐标方程解决.先以F为极点,FX为极轴,建立极坐标系,写出抛物线的极坐标方程,利用极径表示出|AB|+|C
y=-2x²+4当PMQN为正方形时设P(m,-2m²+4)PN=PMm>02m=-2m²+4m²+m-2=0(m+2)(m-1)=0m=-2舍m=1在x轴以下
解题思路:将y=m²代入到函数解析式中,求出A,B;C,D坐标,从而得到AB,CD长度,再求比值解题过程:
第一题,设p为(x.y)所求点满足两个条件(1)y=x平方-x-3(2)|x-y|=2根号2(点到直线距离为根号二,这根据勾股定理可得)这时分两种情况考虑,一是x-y=2时,这时好像算得(三分之七,三