如图,抛物线y=x² bx c过点A(3,0),B(1,0),交y轴于点C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:42
如图,抛物线y=x² bx c过点A(3,0),B(1,0),交y轴于点C
help如图,过y轴上一点A(0,1)作AC平行X轴,交抛物线y=x (x≥0)于点B,交抛物线

1.点B为(1,1),点C(2,1),点D(2,4),点E(4,4),所以AB=1,BC=1,所以AB:BC=12.O、B、E在同一直线上,解析式为y=x

如图《在平面直角坐标系中,抛物线y=ax²+3与y轴交于点A,过点A与x轴平行的直线交抛物线

∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,1/3x2=3解得x=±3,∴B点坐标为(-3,3),C点坐标为(3,3),∴BC=3-(-3)=6.故答案为6.

如图,设抛物线C:x^2=4y的焦点为F,P(x0,y0)为抛物线上的任一点(x不等于0)过P点的切线交y轴于Q点.

抛物线X²=4y即y=1/4x²F(0,1)求导得y'=1/2x那么PQ的斜率k=1/2x0PQ:y-y0=1/2x0(x-x0)令x=0得y=y0-1/2x²0=-y0

如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1

(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-

如图,已知抛物线y=-4x^2+13/2x+3与y轴,x轴正半轴分别交于点A,B,点P是该抛物线一个动点,过点P作PC∥

(1)x=0时,y=3y=-4x²+13/2·x+3=0得到x=2、-8/3∴A(0,3)B(2,0)(2)y=-4x²+13/2·x+3=3得到x1=0x2=13/8∴AP=x2

如图,抛物线y=-1/2x^2+5/2x-2与x轴相交于点A,B.与y轴相交于点C.过点C作CD//x轴,交抛物线点D.

(1)解方程-(1/2)x²+(5/2)x-2=0得:x1=1,x2=4,即A(1,0),B(4,0)对于函数y=-(1/2)x²+(5/2)x-2来说,当x=0时

一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交抛物线于点P.

(1)令y=0,得x2-1=0解得x=±1,令x=0,得y=-1∴A(-1,0),B(1,0),C(0,-1);(2分)(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=45°.∵AP∥C

如图,抛物线y=ax²+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.

(1)y=x-3与坐标轴的两个交点为(3,0),(0,-3)设y=a(x+1)(x-3)把点(0,-3)代入得-3=a(-3),a=1y=(x+1)(x-3)所以y=x²-2x-3(2)y=

如图,抛物线y=a(x2-1)(a<零)与x轴交于A.B与y轴交于点c,过

a=-2即y=-2x2+2再问:可以写一下过程吗再答:A(-1,0)B(1,0)C(0,-a)Yac=-ax-a由平行及B(1,0)得Ybd=-ax+a联立y=a(x2-1)得D(-2,3a)因为面积

(2013•槐荫区二模)如图,直线y=x与抛物线y=x2-x-3交于A、B两点,点P是抛物线上的一个动点,过点P作直线P

联立y=xy=x2−x−3,解得x1=−1y1=−1,x2=3y2=3,所以,A(-1,-1),B(3,3),抛物线的对称轴为直线x=-−12×1=12,∴当-1<x<3时,PQ=x-(x2-x-3)

图自己画的,请见谅,如图1,抛物线y=x²+x-4于y轴交与点A,E(0,b)为y轴上一动点,过点E的直线y=

分析:(1)将x=0,代入抛物线的解析式即可;(2)当b=0时,直线为y=x,解由y=x和y=x2+x-4组成的方程组即可求出B、C的坐标,再利用三角形的面积公式即可求出面积;(3)当b>-4时,△A

已知如图,抛物线y=ax2+bx+c过点B(3.0)且经过直线y=-3x-3与坐标轴的两个交点A,C

1) 分别将x=0、y=0代入y=-3x-3得:            

如图,已知抛物线y=x²-6x+9的顶点为点P,与 y轴交于点B,一经过点B的直线y=-x+b与该抛物线交于点

(1)抛物线与y轴交点为(0,9),所以b=9直线方程为y=-x+9与抛物线方程联立,解得x=0,5所以交点A为(5,4)(2)P点坐标为(3,0),到直线y=-x+9的距离为3√2AB长度为5√2所

如图,抛物线y=x²+bx+c过点a(-4.-3),与y轴交于点b,对称轴是x=-3,

答案见图(希望采纳)很高兴为您解答,【华工王师】团队为您答题.请点击下面的【选为满意回答】按钮.

看图,如图,经过原点的抛物线y=x²-2mx与x轴的另一个交点A,过点P(m+1,½)

(1)当M=2时代入函数式,Y=X方-4X=X(X-4)所以A点座标为,(4,0)此时P点为(3,1/2),OC:3=4:(4-1/2),得OC=24/7(你也可以先求AP方程再求C点座标)(2)当C

如图,点A在抛物线y=1/4x²上,过点A作与x平行的直线交抛物线于点B,延长AO、BO分别与抛物线y=-1/

分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得

如图,过抛物线y^2=4x的焦点作两条互相垂直的直线分别交抛物线于点A,B,求|AB|+|CD|的最小值

分析:考虑到过抛物线y²=4x的焦点F引两条互相垂直的直线AB、CD,利用抛物线的极坐标方程解决.先以F为极点,FX为极轴,建立极坐标系,写出抛物线的极坐标方程,利用极径表示出|AB|+|C

如图,P是抛物线y=-2x²+4对称轴右侧上一个动点,过P作x轴的平行线和垂线分别交抛物线x轴于点M、N,在过

y=-2x²+4当PMQN为正方形时设P(m,-2m²+4)PN=PMm>02m=-2m²+4m²+m-2=0(m+2)(m-1)=0m=-2舍m=1在x轴以下

如图,点P(0.m²)(m>0),在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=1/4x²于A,B,交

解题思路:将y=m²代入到函数解析式中,求出A,B;C,D坐标,从而得到AB,CD长度,再求比值解题过程:

如图,直线y=x与抛物线y=x²-x-3交于A.B两点,点P是抛物线上一个动点,过点P作直线PQ⊥x轴,交直线

第一题,设p为(x.y)所求点满足两个条件(1)y=x平方-x-3(2)|x-y|=2根号2(点到直线距离为根号二,这根据勾股定理可得)这时分两种情况考虑,一是x-y=2时,这时好像算得(三分之七,三