如图,点O是∠EPF平分线上的一点,以O为圆心和∠EPF的两边
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:19:50
(1)作o到AB,CD垂线,通过角边角证全等三角形证两条垂线相等,在园内得AB=CD(2)因为平行所以角OAB=角DPB,同时角OAB=角AOP+角APO,因为角CPO=角APO,得角APO=AOP,
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
过O点做OE垂直AC,OF垂直BC,OH垂直AB因为O是∠B∠C外角的平分线的交点所以OE=OF,OG=OF多以OG=OE所以点O在∠A的平分线上
无法打符号,直接用图片了,请谅解!
在.0是△ABC的旁心.相关证明利用两次角平分线性质定理就能推导出来,加油吧.
连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切
(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角
(1)连结AO,BO,CO,DO,可证三角形AOB和三角形COD全等,则AB=CD;(2)显然当p在圆上时P,A,C三点重合,三角形AOB和三角形COD为直角三角形且全等,所以(1)成立;当p在圆内时
(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;(2)设PO交⊙O于F,连接CF
过O做oh垂直ab于h,做og垂直cd于g很明显oh和og是弦心距因为o在epf的角平分线上所以oh=og所以弦ab=cd
用塞瓦定理来证:三角形ABC内先引两条角分线设为AOBO交于O点然后连接CO并由塞瓦三角形式sin∠OAB/sin∠OAC*sin∠OCA/sin∠OCB*sin∠OBC/sin∠OBA=1因为AOB
由题意可得:OE=3,PC=4连接OC,过C作CH垂直于PO因为圆o与PA相切于点c,所以角OCP=90因为OE=OC=3,PC=4,角OCP=90所以PO=5有面积法可得CH=12/5在RT三角形O
在作OF⊥BCOG⊥ADOH⊥AE因为角平分线上一点到叫两遍距离相等所以OF=OG=OH所以O点在角A的平分线上再问:什么意思??“作OF⊥BCOG⊥ADOH⊥AE”?再答:做辅助线OF垂直BC垂足为
O在∠A的平分线上.证明:过O作OD⊥AB交AB延长线于D,OE⊥BC于E,OF⊥AC交AC延长线于F,∵OB为角平分线,∴OD=OE,∵OC为角平分线,∴OF=OE,∴OD=OF,∴在∠A的平分线上
过点O作OM⊥AB,ON⊥CD,垂足分别为M、N,连接OA、OC∵PG平分∠EPF∴OM=ON(角平分线上的点到角两边的距离相等)∵OA=OC∴△OAM≌△OCN(HL)∴AM=CN∵OM⊥AB,ON
俊狼猎英团队为您解答 ⑴∵OA∥PE,∴∠POA=∠EPO,∵∠EPO=∠APO,∴∠POA=∠APO,∴AP=AO;⑵∵PB=22,PA=OA=10,∴AB=12,过O作OH⊥AB于H,则AH=BH
⑴过O作OP⊥AB于P,OQ⊥CD于Q,∵O在∠EPF的平分线是,∴OP=OQ,∴AB=CD(相等的弦心轤所对的纺相等).⑵∵OA∥PE,∴∠AOP=∠EPO,∵∠EPO=∠APO,∴∠APO=∠AO
1)因为OA平行于PE,所以∠CPO=∠AOP,又因为PG平分∠EPF,即∠CPO=∠OPA,所以∠AOP=∠OPA,所以三角形APO为等腰三角形,AP=OA;2)过点O做PF垂直线交与点M,则OM即
(1)∵OA∥PE∴∠EPG=∠POA又∵PG平分∠EPF∴∠EPG=∠APO∴∠APO=∠POA所以AP=AO(2)过O作PB垂线交PB于M由(1)知PA=OA=10 △OAM是RT△ 所以此时