如图ac是圆o的直径,点b在圆o上,∠acb=30°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:26:12
1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C
呵呵.再问:en再答:选我最佳
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=
连接BD,则∠BD=90°(半圆上的圆周角是直角)又:BC切圆于B,∴∠ABC=90°∴BD是直角三角形ABC斜边上的高∴BD^2=AD*DC=3*2=6AB^2=AD^2+BD^2=3^2+6=15
设BD=x则2/x=x/3所以x=√6所以直径d=√[3²+(6)²]=15故半径r=√15/2楼上错了^^
连接ODAB是直径,所以BD垂直于AC,BCD是直角三角形E是中点,所以DE=BE=CE所以三角形OBE和ODE全等所以OD垂直于DE所以DE是圆的切线
所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\
证明:连接OP,OE.在△ABC中,CE=BE,OA=OB(⊙O半径)则E是CB中点,O是AB中点,则:OE∥AC,∴∠A=∠EOB,又∵圆周角等于圆心角的一半,∴∠POB=2∠A则:∠POE=2∠A
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
1、AE⊥平面ABC,BM⊥AC,∴根据三垂线定理,BM⊥EM,AC=4,〈BAC=30度,BC=AC/2=2,CM=BC/2=1,AM=AC-CM=3,AE=AM,∴三角形EAM是等腰直角三角形,〈
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
证明:连接AD∵直径AB∴AD⊥BC∵AB=AC∴BD=CD(三线合一)
∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线
解题思路:(1)先证OD是△ABC的中位线,即可。(2)连接OC,设OP与圆交于点E,证OC⊥PC即可。解题过程:
北偏东30度,距o点2cm
(1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM.又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴
◎魔杖,由∠ABC=∠CAD得弦AC=弦CD所以弦AD=弦AC+弦CD=3.14x6=18.84厘米弦AC=18.84÷2=9.42厘米
(Ⅰ)证明:∵EA⊥平面ABC,FC∥EA,∴FC⊥平面ABC∵AB⊂平面ABC∴FC⊥AB又∵AC是直径,B在圆上,∴AB⊥BC∴AB⊥平面BFC又∵BF⊂平面BFC∴AB⊥BF.(Ⅱ)在△ABC中