如图g是三角形abc的重心,连结AG

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:05:00
如图g是三角形abc的重心,连结AG
已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC=

=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0

如图,已知G为三角形ABC的重心,三角形ABC的三边长满足AB>BC>CA,若三角形GAB三角形G

是S1=S2=S3.由于重心是中线的三等分点,可得S1,S2,S3都是△ABC面积的三分之一.详细一点:延长CG交AB于点D,由于CD:GD=3:1所以△CAB与△GAB高线之比为3:1,具有同底AB

如图,点O是三角形ABC的重心,请问三角形AOB,三角形BOC,三角形AOC的面积有什么关系?说明理由

S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A

若G是三角形ABC的重心,则向量GA+向量GB+向量GC=?

设AM是AB边上的中线,延长AM至D,使MD=AM,AD=2AM,向量AD=向量AB+向量BD,以下通为向量,2AM=AB+BD,AM=(AB+BD)/2,BD=AC,AM=(AB+AC)/2,AG=

如图 若G是三角形ABC的重心,GD∥BC 则三角形ADG与三角形ABC的面积比为

因为G是重心又因为AE平分BC所以AG:GE=2:3因为GD∥EC所以AG:AE=GD:EC=AD:AC=2;3所以三角形AGD和aec相似所以AGD和AEC面积比为4:9因为E是中点所以aec:ab

如图,F是三角形ABC的重心,EF//AB,S三角形ABC=36,则S四边形ADFE=

因F是△ABC的重心,则:1、点D是边AB的中点,从而有:△ACD与△BCD的面积相等,所以三角形ADC的面积是18;2、且:CF:CD=2:3,:△BCF的面积是△ADC面积的4/9,则△BCF的面

如图,G是三角形ABC的重心,P,Q分别在AB,AC上,已知向量AP=3/4向量AB,直线PQ过点G,设向量AQ=λ向量

G为三三角形的重心,则AG=(1/3)AB+(1/3)AC.①.由于P、G、Q三点一直线,所以GP=mGQ,而GP=AP-AG=(3/4)AB-AG,GQ=AQ-AG=λAC-AG,代入,有:(3/4

如图,G是△ABC的重心,求证:向量GA+向量GB+向量GC=0.求详解,

延长AG,交BC于点D则向量AG=2向量GD,且D是BC中点∴向量GB+向量GC=向量GD+向量DB+向量GD+向量DC=2向量GD=向量AG∴向量GA+向量GB+向量GC=0向量再问:Ϊʲô����

如图,P是三角形ABC所在平面外的一点,D,E,F分别是三角形PBC,PAC,PAB的重心,证:面DEF//ABC

利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH

如图,G是三角形ABC的重心,延长AD,使DH=GD,K为BG的中点

连接BH由题意知,D是BC、GH的中点,故四边形BGCH是平行四边形.(对角线互相平分的四边形是平行四边形)那么,BG//HC所以∠FGC=∠GCH又因为点F、K分别是AB、BG的中点所以FK//AG

如图,在三角形ABC中,DF经过三角形ABC的重心G,且DF//AB,DE//AC,连接EF,如果BC=5,AC=根号2

由G是△ABC的重心,DF过点G,且DF‖AB,可得CD/CB=2/3.∴DF=2/3AB.由DE‖AC,CD/CB=2/3,得DE=1/3AC.∵AC=根号2AB,∴AC/AB=根号2,DF/DE=

如图,若点G是三角形ABC的重心,GD平行于BC.(1)求AD比AC(2)求GD比BC

延长AG交BC于点E.  因为 G是三角形ABC的重心,  所以 AE是三角形ABC中BC边上的中线,     AG:AE=2:3,  因为 GD//BC,  所以 三角形AGD相似于三角形AEC, 

如图,点G是三角形ABC的重心且AD垂直BE已知BC=3 AC=4求AB的长

AG^2+EG^2=AE^2=2^2=4BG^2+DG^2=BD^2=1.5^2=2.25根据三角形重心的性质,有AG=2DG,BG=2EG,代入上面两个式子,得4DG^2+EG^2=44EG^2+D

已知,如图,点G是三角形ABC的重心,GE平行于AB,GF平行于AC.

因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=

在三角形ABC中,G是三角形ABC的重心,证明:向量AG=三分之一(向量AB+向量AC)

在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A

如图,在三角形ABC中,角C=90度,点G是三角形ABC的重心,且AG垂直CG(1)求证三角形CAG相似三角形ABC (

重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB

如图:已知G为三角形ABC的重心,求证AG=2GF

重心的性质及证明方法  1、重心到顶点的距离与重心到对边中点的距离之比为2:1.   三角形ABC,E、F是AB,AC的中点.EC、FB交于G.   过E作EH平行BF. 

已知点g是三角形abc的重心,D,E过点G且DE平行BC求S三角形ade:S三角形abc的值

连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF