如图一个正五棱柱的底面边长为2cm,高为4cm.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:18:21
如图一个正五棱柱的底面边长为2cm,高为4cm.
一个正五棱柱,其底面边长都是6厘米,侧棱长为5厘米,他的侧米展开图的面积为?

五棱柱有5个侧面,底面边长都是6厘米,证明侧面都一样.6×5×5=30×5=150(平方厘米)

已知一个正四棱柱,底面边长为3、高为3根号2,则此正棱柱的表面积为

S=两个底面积+四个侧面积=3×3×2+3×3根号2×4=18+36根号2

如图,已知正三棱柱ABC-A1B1C1的侧棱长为1,底面边长为根号2,求异面直线AB1与BC1夹角

取BC中点为M连接AM,B1M∵ ABC-A1B1C1是正三棱柱∴ 三角形ABC是等边三角形∴ AM⊥BC∵ 正三棱柱的侧面与底面垂直∴ AM⊥平面B

已知正四棱柱对角线长2根号6底面边长为2求这个正四棱柱的体积

由底面边长为2可以用勾股定理求得底面对角线长为2根号2,对角线长2跟号六和底面对角线长2根号2可以得高为4,V=2X2X4=16

如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点

再问:第一步您能写详细些吗,麻烦了再答:在⊿BB1M和⊿BNC中∠B1BC=∠BCC1=90°BB1=BC又∵B1M⊥BN∴∠NBC=90°-∠BMB1而∠BB1M=90°-∠BMB1∴∠NBC=∠B

一个正四棱柱的各顶点在一个直径为2厘米的球面上,如果正四棱柱的底面边长为1厘米,那么该棱柱的表面积为多少

根据下图,可求面积两上底面积之和:2,加四个侧面积之和根号二×4,即可得出面积等于2+四倍根号二

一个正四棱柱,各顶点都在d=2的球面上,且底面边长为1,求正四棱柱的表面积. 过程

4√2﹢2再问:怎么做?再答:因为d=2,即对角线为2,根据勾股定理可得四棱柱高为√2

一个正三棱柱的底面边长为8根号3,求这个三棱柱外接球的体积

外接球心必在三棱柱两个底面重心的连线的中点上.连线的一半:12/2=6底面重心到顶点距离:8√3/√3=8以上两条线与外接球半径构成直角三角形所以外接球半径:10外接球体积是:4/3*πr^3=418

一个正三棱柱的底面边长是3cm,侧棱长为5cm,则此三棱柱的侧面展开图的周长是多少cm

此三棱柱的侧面展开图是矩形矩形的一边长为3*3=9另一边长为5所以周长为2*(5+9)=28

一个正三棱柱的底面边长为4cm,侧棱长为6cm,则此三棱柱的侧面展开图的周长为?

展开后是一个长方形,长为正三棱柱底面的周长,宽为侧棱长,所以展开后的周长为2(4*3+6)=2*18=36(cm)

一个正四棱柱的各个顶点都在一个半径为2cm的球面上,如果正四棱柱的底面边长为2cm,那么该棱柱的表面积为(  )

∵一个正四棱柱的各个顶点都在一个半径为2cm的球面上,正四棱柱的底面边长为2cm,球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,∴正四棱柱的高为16−8=22,∴

正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为根号2a.

以B1A1为Y轴,B1A1中点为O点,OC1为X轴,BA中点为O1,OO1为Z轴,建立坐标系;(1)A的坐标为(0、1/2a、2a),B的坐标为(0、-1/2a、2a),A1的坐标为(0、1/2a、0

立体几何:如图 ,已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3根号2

因为(1)中说EF=C1E,又因为C1E=CF,所以EF=CF再问:C1E=CF???why再答:BF=EA1,BC=A1C1,根据勾股定理,CF=C1E

(有图)已知正三棱柱ABC-A1B1C1的底面边长为2

1、(1)连结矩形ABB1A1对角线AB1和A1B交于E,连结DE,平面ADB1∩平面BA1C1=DE,对角线相互平分,D是A1C1中点,E是AB1中点,DE是△A1C1B的中位线,DE‖BC1,DE

已知正三棱柱的底面边长为1,侧棱长为2求表面积和体积

S底=2*(S底1)=2*(1/2)*(根号三)/2}=(根号三)/2S侧=3*(S侧1)=3*1*2=6S=S底+S侧=(根号三)/2V=1*{(根号三)/2}*2=根号三

(2012•汕头二模)如图,已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,

(1)证明:∵AA1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,∴AA1⊥B1D1,∵B1D1⊥A1C1,AA1∩A1C1=A1,∴B1D1⊥平面AA1C1,∵B1D1⊂平面AB1D1,∴

一个正四棱柱的各个顶点在一个直径为2的球面上,如果正四面体的底面边长为1,那么棱柱的表面积是

求出棱柱的高就行了,画个图会清楚很多把棱柱对角线连起来,地面的对角线连起来棱柱的高就是新连起来的直角三角形的高球面直径为2,也就是该直角三角形斜边=2底下一条直角边=根号2竖起来的直角边=根号2表面积

正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为1,侧棱长为2

连接FE1、FD,则由正六棱柱相关性质可得FE1∥BC1,在△EFD中,EF=ED=1,∠FED=120°,∴FD=EF2+ED2−2EF•ED•cos120°=3.在△EFE1和△EE1D中,易得E