如图在RT△ABC中CD是斜边AB的中线MN是中位线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:39:09
如图在RT△ABC中CD是斜边AB的中线MN是中位线
如图 在rt三角形abc,角acb=90度,cd是斜边ab上

解题思路:根据题意得出每对三角形中的两组内角相等,可得三角形相似解题过程:解:有三对三角形相似,即:△ACD∽△CBD△ACD∽△ABC,△CBD∽△ABC理由:①∵CD⊥AB,&there

如图,在Rt△ABC中,EF是中位线,CD斜边AB上的中线,求证:EF=CD

证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】

如图,在Rt△ABC中,CD是斜边AB上的高,∠ACD=40°,则∠EBC=

角ACD=角ABC,所以角EBC=180°-40°=140°再问:为什么∩ACD=∩ABC?再答:角ACD+角A=90(在三角形ACD中,角ADC为直角)角角ABC+角A=90(在三角形ABC中,角A

如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.

证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).

如图,在Rt△ABC中,CD是斜边AB上的中线,角CDB=130度,求角A,角B的度数.

∵在Rt三角形ABC中,CD是AB上中线,∴AD=BD=ABCD=AB∴CD=BD∴∠B=∠DCA又∵∠CDB=130∴∠B+∠DCA=180-∠CDB=50∴2∠B=50∠B=25又∵三角形ABC为

如图,在Rt△ABC中,CD是斜边上的中线,CE是高.已知AB=10cm,DE=2.5cm.

(1)已知,在Rt△ABC中,CD是斜边上的中线,CE是高CD是斜边上的中线,AB=10cm,∴CD=5,在直角三角形CED中,DE=2.5cm(已知)CD=5,∴∠ECD=30°,∴∠CDE=60°

如图,在Rt△ABC中,CD是斜边AB上的中线,DE是△ACD的中线,则DE平行BC.请说明理由.

∵DE是AC的中线∴AE:AC=1:2又∵CD是AB的中线∴AD:AB=1:2∴AE:AC=AD:AB且AE,AC,AD,AB在一个三角形中∴DE//BC

已知:如图,在Rt△ABC中,CD是斜边AB上的中线,DE是△ACD的中线,则DE‖BC,请说明理由

∵Rt三角形且D是AB中点∴AD=CD;∵AC中点∴DE⊥AC;∴∠AED=∠ACB=90°;∴DE‖BC

如图,在Rt△ABC中,CD是斜边AB上的中线,DE是△ACD的中线,则DE‖BC,请说明理由

根据题意:D是AB中点,E是AC中点,那么DE是Rt△ABC的中位线.那么DE‖BC

已知:如图,在Rt△ABC中,CD是斜边AB上的高.

(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下

已知:如图在Rt△ABC中,CD是斜边AB上的中线,DE是△ACD的中线,则DE//BC,请说明理由

cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D

如图,在Rt△ABC中CD是斜边AB上的中线,若∠CDB=60°,则∠B=

∠B=60duRt△ABC中CD是斜边AB上的中线因为Rt△ABC的性质CD=DB中线=2/1AB=DB所以∠DCB=∠B(等腰三角形)=(180-60)/2=60

如图,在Rt△ABC中,CD是斜边AB上的高

证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC

已知,如图,在Rt△ABC中,CD是斜边AB上的高,

证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠

如图,已知在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:CD²=AD*DB

证明:因为CD是斜边AB上的高,所以角ADC=角BDC=90度,所以角A+角ACD=90度,因为角C=90度,所以角BCD+角ACD=90度,所以角A=角BCD(同角的余角相等),因为角ADC=角BD

如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是

因为△ABC是直角三角形,CD是斜边AB上的中线,所以CD=1/2AB所以AB=4sinB=AC/AB=3/4

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosB=______.

∵在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4,由勾股定理得:BC=AB2−AC2=42−32=7,∴cosB=BCAB=74,故答案为:74.