如图在扇形oab中角aob 60,c为弧
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:09:11
(1)证明:∵∠AOB=∠COD=90°,∴∠AOC+∠AOD=∠BOD+∠AOD;∴∠AOC=∠BOD;在△AOC和△BOD中,∵OA=OB∠AOC=∠BODCO=DO,∴△AOC≌△BOD(SAS
连接OD,由折叠的性质可得OB=BD,∵OB=OD(都为半径),∴OB=OD=BD,∴△OBD为等边三角形,∴∠DBO=60°,∴∠CBO=∠CBD=12∠OBD=30°(折叠的性质),在Rt△OBC
先作点C关于直线OA的对称点C′,连接BC′,则BC′的长即为PB+PC的最小值,再过点O作OD⊥BC于点D,连接OC′,∵BC=2AC,∠AOB=90°,∴AC=30°,∴∠AOC′=30°,∴∠B
好麻烦...先这样连接O'D,O'E,O'O,O'CO、O'、C共线的没疑问吧..(==就这步很难说明,自己想)并且O'O肯定是平分∠AOB的∵AO,BO是切线∴O'D,O'E⊥AO,BO∵∠AOO'
该图中的弦AB外侧的两个小阴影圆弧与O点附近的空白圆弧的面积相等(可以用全等证明),那么把阴影的圆弧移动到空白处,则可获得一个完整的等腰直角三角形阴影,所以该图中的阴影部分面积S=1*1*1/2=1/
由弧CD=3π,∠AOB=60°,所以以OD为半径的圆周长是:3π×360/60=18π,半径OD=18π÷(2π)=9,OA=9+3=12,所以扇环面积ABCD=(12²π-9²
圆心角的弧度数=弧长/半径,因此角AOB=12/8=1.5弧度.填:1.5.而扇形的面积=1/2*弧长*半径=1/2*12*8=48cm^2.
∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=12∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l)
第一个问题:∵AB是扇形OAB的弧,∴OA=OB,而AC=BC,∴∠BOD=∠AOB/2=150°/2=75°.第二个问题:作∠DOE=60°交AC于E.∵∠AOD=∠AOB/2=75°,而∠DOE=
∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=1/2∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l
如图.最后没写单位,不好意思.
(1)∵∠COD=∠AOB=90°∴∠AOC=∠BOD∵AO=BOCO=DO∴△AOC≌△BOD∴AC=BD(2)把△AOC内的阴影部分旋转到△BOD内,阴影部分就是一个扇环.则:阴影面积=扇形ABO
oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来
首先,你的图太不标准啦,这哪里是个扇形啊其次,我只能按扇形来做,只能理解为此扇形是圆面积的1/8,因为圆形角是45度最后,就是答案啦,圆形面积6.28*8=50.24.50.24/3.14=16,所以
OA=OB=4,AB=4√2根据勾股定理逆定理OA²+OB²=AB²所以∠AOB=90扇形圆心角为90度,根据母线长L和圆锥底面半径R的关系R/L=90/360,R=L/
如图,弧BC的度数是弧AC的的2倍,即有∠BOC=2∠AOC而∠AOB=90°,所以∠BOC=60°、∠AOC=30°做C点关于OA的对称点D,连接BD,显然BD的长度是PB+PC的最小值∠BOD=1
连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD
周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90
∵OC=4,点C在AB上,CD⊥OA,∴DC=OC2-OD2=16-OD2∴S△OCD=12OD•16-OD2∴S△OCD2=14OD2•(16-OD2)=-14OD4+4OD2=-14(OD2-8)