如图已知AB=CD点 E.F.G分别是BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:08:20
是不是应该求∠EFD呢,因为这个图上没有∠EDF分析:因为AB//CD,所以同位角∠BEG=∠EGF=72°又因为EG平分∠BEF,所以∠FEG=∠BEG=72°在三角形EFG中,∠EFD=180°-
证明:∵平行四边形ABCD∴AD=BC,∠A=C在三角形AEH与三角形CFG中∵AH=AD-DH,CF=BC-BF又AD=BC,BF=DH∴AH=CF①又AE=CG,∠A=C②由①②得三角形AEH≌三
证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=
简单再问:好吧!再答:我做再答: 再答:早再答:对了再答:给好评再答:给嘛!再答:hi再问:谢谢。再问:很好!再问:很好!再问:错了我找你。再答:加入梦之都群368575682为你解答再问:
∵E,F,G,H分别是AB,CD,AC,BD的中点∴EH∥AD,且EH=1/2ADGF∥AD,且GF=1/2ADEG∥BC,且EG=1/2BCFH∥BC,且FH=1/2BC又∵AD=BC∴EH=GF=
证明:连接EG,GF,GH,HE由平行四边形ABCD,而AE=CF,BG=DH,得BE=DF,CG=AH,角A=角C,角B=角D,所以三角形AEH全等于三角形CFG,三角形BGE全等于三角形DHF,故
你连接OF,OG.三角形EOF里面,EFO是直角,OE=1/2OF,所以FOE=60°,类似GOE=60°,所以弧FCG=120°.而弧AF=90°-FOE=30°所以弧FCG=4弧AF
这道题主要考到了角平分线上的点到角两边的距离相等.首先我们过G点分别作GM⊥AB,GN⊥CD.∵EG,FG分别是∠BEF与∠DFE的角平分线,且G点分别在∠BEF与∠DFE的角平分线上.∴GM=GH=
因为AB‖CD所以∠CDF=∠BGF,∠C=∠GBF因为E,F分别为AD,BC的中点所以CF=BF所以△CDF≌△BGF(AAS),CD=BG所以DF=GF所以EF是△DAG的中位线所以EF=1/2A
因为AB//CD所以∠1+∠BEF=180度而∠1=50°所以∠BEF=130°而EG平分∠BEF所以∠BEG=65°又AB//CD所以∠BEG=∠2=65°
∵AB∥CD,∴∠1=∠CFG,又∵∠1=∠2,∴∠2=∠CFG,即FG平分∠EFC.
(1)取BD的中点为H,连接GH,因为AB//CD,所以∠ABD和∠BDC之和为180°,又因为BG为∠ABD的角平分线,DG为∠BDC的角平分线,所以∠GBD和∠BDG之和为90°,所以∠BGD为9
AB∥CD所以∠BEF+∠EFD=180因为∠EFG=72所以∠BEF=180-72=108EG平分∠BEF所以∠BEG=54所以∠BEG=∠EGF=54
∵E.F.G分别是AD/BC/BD的中点∴EF垂直平分二分之一AB,GF垂直平分二分之一DC因为AB=DC所以GE=GF即三角形EGF是等腰三角形又因为GH平分角EGF所以GH⊥EF三线合一
因为平行四边形ABCD所以角A=角C,AD=BC,AB=DC,因为AE=CG,BF=DH所以AH=CF,AE=CG,所以△AEH全等于△CGF(SAS)
应是求(c1+c2)/c3的最大值这三个三角形都相似:C2,C3所在三角形显然相似,由于∠BED=∠CFB,则△CEF为等腰三角形;因此CG也是高,进而C1所在三角形也与上述二△相似;则(C1+C2)
证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),∴∠B=∠C(等角的余角相等);在Rt△BED和Rt△CFD中,∠B=∠CBD=CD(已知)∠BDE=∠CDF,∴△BED≌△C
∵平行四边形abcd∴∠a=∠c∠b=∠dad=bcab=cd∴ae=cgbe=dgah=cfbf=dh∴△aeh全等△cgf△dhg全等△bfe∴eh=fgef=hg∴四边形ehgf是平行四边形(全
证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,∵BF=DH,∴AH=CF,∵在△AEH和△CGF中AH=CF∠A=∠CAE=CG,∴△AEH≌△CGF(SAS).
证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD∵点E、F分别是AB、CD的中点,∴DH/HB=DF/AB=DF/CD=1/2.∴DH=1/3BD.同理:BG=1/3BD.∴DH=H