如图已知等边三角形,ABC中BD=CEAD与BE交手p则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:05:33
∵AC=BCCD=CE∠BCD=∠ACE=120°∴△BCD∽=△ACE∴∠CBD=∠CAE∵∠CBA+∠BAC=120°∴∠CBA+∠BAC=∠DBA+∠DBC+∠BAC=∠DBA+∠CAE+∠BA
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
∵△ABC和△CDE为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,又BCD在一条直线上,∴∠ACD=∠BCE=∠DCE+∠ACE=∠ACB+∠ACE,∴△ACD≌△BCE(边角边
证明:∵△ABC等边∴AC=BC,∠BAC=∠B=∠ACB=60°∵△CDE等边∴CD=CE,∠DCE=60°∴∠ACB=∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CAD=∠B=6
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
C(-1,3√3),或者C(-1,-3√3),
∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌⊿CFE≌
证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°
人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B
∵△ABC为等边三角形∴AB=AC,∠BAC=60°∵四边形ADEF是菱形∴AD=AE∵∠DAF=60°=∠DAC+∠CAE∠BAC=60°=∠BAD+∠DAC∴∠CAE=∠BAD∴△ABD全等于△A
∠EOB=120°证明△BCD≌△ACE(SAS)得∠CBD=∠CAE∴∠EOB=∠BAO+∠ABO=∠BAC+∠ABC=120°(2)先证明△ACD≌△CBF(ASA)得CD=BF,∵CD=BD,∴
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
这是步骤:∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-
先吐槽...不可能是等边三角形吧--sinA=√2/10cosA=7√2/10tanA=1/7tan(A-B)=(tanA-tanB)/(1+tanAtanB)=-2/11(1/7-tanB)/[1+