如图所示,在四变形abcd中,已知ab平行dc,db平分角abc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:13:57
如图所示,在四变形abcd中,已知ab平行dc,db平分角abc
在如图所示的几何体中,四边形ABCD为平行四边形

因为FG//BC,ABCD为平行四边形,AD//BC,所以FG//AD,因为EF//AB,FG//BG,EG//AC,AB=2EF,角ACB=90度,所以BC=2FG,因为M为AD的中点,所以AD=2

如图所示,在正方体ABCD—A1B1C1D1中.

设N是棱C1C上的一点,且C1N=14C1C,则平面EMN为符合要求的平面.证明如下:设H为棱C1C的中点,∵C1N=14C1C,∴C1N=12C1H,又E为B1C1的中点,∴EN∥B1H,又CF∥B

在加热条件完全相同的情况下,ABCD四种物质的熔化图像如图所示,(1)这四种物质中,____是非晶体(2)这四种物质中,

(1)这四种物质中,__B__是非晶体(2)这四种物质中,__AC___可能是同种物质(3)这四种物质中,___C_的质量一定比__A__的大AC中平的那段线应该是在同一个高度的吧

如图所示,在四棱锥P-ABCD中,底面ABCD 是平行四边形,E为侧棱PC上一点,且PA//平面BDE,求PE:PC的值

连结BD和AC,交于O,连结OE,∵四边形ABCD是平行四边形,∴O是AC的中点,(平行四边形对角线互相平分)∵PA//平面BDE,平面PAC∩平面BDE=OE,∴PA//OE,∴OE是三角形CAP的

如图所示,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC

以DA,DC,DD1分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz.则D(0,0,0),B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4),A(2,0,0),B1(2,2,

如图所示,在四棱锥P-ABCD中 底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为BC中点

图中B、C点标反了,E为BC的中点,也画的不对,⑴、ABCD为菱形,——》∠DAB=60°=∠DCB,DA=DC=BA=BC——》△DBC为等边三角形,E为BC中点,——》DE⊥BC,——》DE⊥AD

如图所示,在四棱锥P-ABCD中,平面PAD垂直于底面ABCD,PA等于PD等于2,AD等于2倍根号2

1、取AD中点G,连接PG,GB.△PAD为等腰直角三角形,则PG⊥AD,PG⊥面ABCD.∵菱形ABCD中,∠DAB=60,连接BD,则△ABD为等边三角形.∴BG⊥AD,又∵PG⊥AD∴AD⊥面B

在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB//DC,角DAB=90°

你要求什么呢?再问:PA=AD=DC=1,AB=2,��һ����֤:MC//ƽ��PAD再答:���������������ðɣ�再答:M�������再问:MΪPB�е�再问:再答:��һ�ᰡ再

怎么求四变形ABCD的面积

解题思路:此题通过切割法很容易就给计算出来了。。。。。。。。。解题过程:

(2014•崇明县二模)如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=2,AA1

(1)证明:∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,∴以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立如图所示空间直角坐标系.∵AB=1,BC=2,AA1=2,E

(2014?崇明县二模)如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=2,AA1

(本题满分12分)本题共有2小题,第1小题满分(6分),第2小题满分(6分).(1)因为在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=2,AA1=2,E是侧棱BB1的中点

如图所示,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:平面

∵G、F分别是AD、D1D的中点,∴GF是△DAD1的中位线,∴GF∥AD1,∴AD1∥平面BGF.∵ABCD-A1B1C1D1是直四棱柱,∴BB1=DD1、BB1∥DD1.∵FD1=DD1/2、BE

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE(1)证明:

(1)连接AD,因为,PA垂直平面ABCD,AD属于平面ABCD,所以BD垂直于PA;因为ABCD为矩形,BD垂直于AC,AC属于平面PAC,所以BD垂直于AC所以BD垂直于平面PAC (2

在平面直角坐标系中,正方形ABCD的位置如图所示

考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1