如图所示,正方形ABCD中,E为BC上一点E,B,AF平分角DAE交CD于F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:30:21
PE+PD最小就是BE的长,BE就是正方形的边长,∴S正方形ABCD=25.
(I)证明:由已知MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD又BC⊂平面ABCD,因为四边形ABCD为正方形,所以PD⊥BC又PD∩DC=D,因此BC⊥平面PDC在△PBC中,因为G、F分
证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A
延长EA至H,使AH=FC;连BH;则,AH=FC,AB=BC,∠BCF=∠BAH=90°;三角形BCF与三角形BAH全等;所以BF=BH,∠ABH=∠FBC;∠EAH=∠EAB+∠ABH=∠EAB+
延长FD至H,使DH=BE,连接AH在△ABE与△ADE中AB=AD∠ABE=∠ADHBE=DH∴△ABE全等于△ADH(SAS)∴∠BAE=∠DAH,AH=AE∵∠EAF=45°∴∠FAH=∠BAE
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.
太简单了吧90再问:请你回答90是什么?再答:角度呗
(1)HL定理证明三角形ADF与三角形ABE全等(2)题目未写完再问:连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM。判断四边形AEMF是什么特殊四边形?并证明你的结论再答:菱形,
这个问题已经有很多的现成回答了啊,提示:将△CBE绕B点旋转90°,得△BE'A,连接EE' 135°
(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+
S3=S2+S7+S8.理由:如图,图中S3的面积S3=SABCD-S△ABE-S△BCF-S△CDE-S△ADF+S2+S7+S8化简得S3=BC•CD-12×(BE+EC)×CD-12×(DF+F
S⊿DEF=16﹙1-1/4-3/8-1/16﹚=5﹙面积单位﹚
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°,∴∠D=∠ABF=90°,又DE=BF,AD=AB,∴△ADE≌△ABF.(2)将△ADE顺时针旋转90后与△ABF重合,旋
证明:取AD的中点H,连接FH,GH,则EF∥DC,EF=(1/2)DC=1,GH∥DC所以:EF∥GH所以:EFHG是梯形,即EFHG四点确定一个平面,又因为:AP∥FH,且FH在平面EFHG内所以
∵CD⊥AD(正方形哈)又∵CD⊥PD(PD⊥面ABCD)∴就有CD⊥于面PAD又EF平行CD(中位线)∴EF⊥面PAD因为PA属于面PAD∴PA⊥EF做AP的重点M,并连接BM,FM,易得BG平行相
∵∠AFD=65°,AB‖CD∴∠BAE=65°∵ABCD是正方形∴BA=BC,∠ABE=∠CBE=45°∵BE=BE∴△ABE≌△CBE∴∠BEC=∠BEA∵∠BEA=180°-65°-45°=70
⑴∠ADC=∠A1DC=90º,∴∠ADA1=180ºA,D,A1三点共线.⑵⊿BCE≌⊿B1CE(SAS)∠EB1C=∠EBC=a∴∠BRF=∠EB1C+∠EBC=2a.