已知:MN是△ABC的中位线,点P在MN上,BP.CP交对边于点D,E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:24:53
AD与MN互相平分理由:连接DN、DM∵MN是△ABC的中位线,AD是BC上的中线∴M、N、D是三边中点,即MD、ND都是三角形的中位线∴DM‖AC,DN‖AB∴四边形AMDN是平行四边形∴AD与MN
证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
易证得CD=2分之一AB且MN=2分之一AB所以CD=MN
证明:1、∵MN是AB的垂直平分线,∴CA=CB,DA=DB,∴△ABC和△ABD是等腰三角形.2、∵AC=BC,∴∠CAB=∠CBA.∵AD=BD,∴∠DAB=∠DBA,∴∠CAB+∠DAB=∠CB
证明:∵CD⊥AB、BE⊥AC∴∠BDC=∠BEC=90∵M是BC边上的中点∴DM=BC/2,EM=BC/2(直角三角形中线特性)∴DM=EM∵N是DE的中点∴MN⊥DE(三线合一)数学辅导团解答了你
延长AP交BC于F,再过F作FG∥CE交AB于G、作FH∥BD交AC于H.∵MN是△ABC中过AB、AC的中位线,∴MN∥BC,∴MP∥BF,∴AP=PF.∵FG∥CE、AP=PF,∴AE=EG. ∵
是的是直角三角形.a^2+b^2=m^2-2mn+n^2+4mn=m^2+n^2+2mnc^2=m^2+n^2+2mn所以a^2+b^2=c^2所以三角形是直角三角形
B∵AD是∠CAB的平分线,∴∠CAD=∠BAD,∴A正确;∵BE不一定垂直AC,∴无法判断OE、OF是否相等,∴B错误;∵MN是边AB的垂直平分线,∴AF=BF,OA=OB,∴C、D正确.故选B.
(1)证明:∵CE平分∠BCO,CF平分∠DCO,∴∠OCE=∠BCE,∠OCF=∠DCF,∴∠ECF=12×180°=90°;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由如下:∵MN∥
MN是线段AD的垂直平分线,也是线段BE的垂直平分线,也是线段CF的垂直平分线.
图我帮你画了.题目是这样做的过M作MP⊥BC,交BC于P,连接NH∵AN=NC,DH=HC∴NH//AD又∵AD⊥BC∴NH⊥BC又∵MP⊥BC∴MP//NH又∵MN是中位线∴MN//BC∴四边形MN
证明:∵M是AB的中点,N是AC的中点∴AM=MBMN∥BC又DC∥AB∴MBCD是平行四边形∴DC=MB又AM=MB∴DC=AM又DC∥AB∴AMCD是平行四边形∵AC=BCM是AB的中点∴CM⊥A
是求ef+gh+mn的值看图中证明
AM=1/2ABAN=1/2ACMN=AN-AM=1/2(AC-AB)=1/2BC(以上线段都要加向量符号)向量共线,所以MN//BC
(1)证明:∵由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,∴∠BDA=∠CEA=∠BAC=90°,∴∠DAB+∠EAC=90°,∠ECA+∠EAC=90°,∴∠DAB=∠ECA,在△
该命题为假命题如果ABC为等腰直角三角形,角A=90度则MN=AP
证明:∵MN∥BC ∴△AMN∽△ABC &nb
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
EM,DM分别是两个直角三角形的斜边中线,所以,斜边都是BC,EM=DM三角形DME是等腰三角形N是DE边中点,所以MN是△DME的中线也是高(等腰三角形性质)