已知:如图, ⊙O的两条直径AB⊥CD,四条弦AE FD CG HB.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:09:12
AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠
(1)证明:过O点作OE⊥CD,垂足为E,∵AC是⊙O的切线,∴OA⊥AC,∵CO平分∠ACD,OE⊥CD,∴OA=OE,∴CD是⊙O的切线.(2)过C点作CF⊥BD,垂足为F,∵AC,CD,BD都是
选A,理由如下:将AD,DB,BC,CA连起来,得到一个对角线=2的正方形,由割补法:将外面8个弓形图形放进去,阴影面积S=大正方形面积=4²÷2=8.
证明:设AB、CD交于点P,连接OP.假设AB与CD能互相平分,则CP=DP,AP=BP.∵AB、CD是⊙O内非直径的两弦,∴OP⊥AB,OP⊥CD.这与“过一点有且只有一条直线与已知直线垂直”相矛盾
因为AC与BD是圆O的两条直径,利用圆心角是所对的圆周角的两倍,即可以得出角A,角B,角C,角D都是直角.再利用直径相等(即AC=BD),AB=BA,角A=角B,说明三角形ABD与三角形BAC全等,可
AB‖ED弧BD=(180°-40°)/2=70°∠BOC=180°-70=110°
证明:连接OE,则有OE=OC∴∠OAE=∠OEA∵AE//CD∴∠OAE=∠COA,∠OEA=∠DOE∵∠BOD=∠COA∴∠BOD=∠DOE∴DE弧=DB弧
∵AB和CD为⊙O的两条直径,弧CE的度数为40°,∴连接OE,则OE=OC,∠COE=40°,故∠1=∠2=12(180°-∠COE)=12(180°-40°)=70°,∵弦CE∥AB,∴∠BOC=
∠ADF=90度∠DAB=45度∠BAF=15度∠DAF=60度故∠DFA=30度AD=根号下2AF=2根号下2DF=根号下6所以面积为根号下3
连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E
∠BOC=(180°-40°)/2=70°再问:为啥∠BOC等于∠AOE?再答:∠BOC=弧BC的度数弧BC的度数=弧AB的度数-弧DC度数-弧AE的度数AB弧度数=180°(直径所对弧度数),弧AE
连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相
提示,连接AC,过C作CG垂直AF,垂足为G令CF=a,CE=x,A0=rCG=FG=1/2根号2a,AG=3/2根号2aAC=根号5ar=根号5a/2用△AOE,△CGE相似AE/CE=AO/CGA
1.因为直径AB,所以角ACB=角BDA,又因为角AEC=角BED:△ACE相似△BDE2.三角板的直角顶点所以角COD=90度弧CD=90度角EBD=45度,BD=DE
证明:∵∠AOC=∠BOD【对顶角相等】∴弧AC=弧BD【同圆内,相等圆心角所对的弧相等】∵AE//CD【已知】∴弧AC=弧DE【平行的两弦所夹的弧相等】∴弧BD=弧DE【等量代换】
因为在⊙O内,所以OA=OB,OC=OD又因为E,F是OA,OB中点,所以OE=OF所以CEDF是平行四边形(对角线互相平分)
因为直径AB,所以角ACB=角BDA,又因为角AEC=角BED:△ACE相似△BDE三角板的直角顶点所以角COD=90度弧CD=90度角EBD=45度,BD=DE
连接BD,则:BD⊥OC、AD⊥BD得:OC//AD再问:为什么AD⊥BD呢?对不起啊俺俺基础不大好再答:AB是圆的直径,则:∠ADB=90°,即:AD⊥BD又:CB、CD是圆的切线,则:OC⊥BD所
(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.∴CD=BD.∴CD=BD.(2)∵AC∥OD,∴PAPC=AOCD.∵PAPC=56,CD=BD,
图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.