已知A是n阶矩阵,且满足方程A2 2A=0,证明A的特征值只能是0或-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:34:05
1.两边同时乘发A^(-1),得 A-E+A^(-1)=0,则A^(-1)=E-A2.∵a1,a2,a3都是2维向量,向量组个数3>2∴该向量组线性相关3.∵向量组的个数=向量组的秩=
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
n=2的时候直接把A*写出来验证n>2的时候看A*的秩就行了,A^T=A*=>rank(A^T)=rank(A*),只有零矩阵和满秩矩阵才满足这一点.还有一种方法是利用(A*)*=|A|^{n-2}A
2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图:
证明:设a是A的特征值,则a^2+2a是A^2+2A的特征值而A^2+2A=0,零矩阵的特征值只能是0所以a^2+2a=0所以a(a+2)=0所以a=0或a=-2即A的特征值只能是0或-2.
A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,
显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E
由已知,A(3A-2E)=-4I所以A可逆,且A^-1=(-1/4)(A-2E).再由3A^-2A+4I=0得A(3A+2I)-(4/3)(3A+2I)+8/3I=0所以(A-(4/3)I)(3A+2
A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2
首先你要知道r(A+B)
D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到
(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A