已知BE垂直于AD于点E,CE垂直于AD于点F,且BE等于CF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:49:47
证明:∵BE⊥CE,AD⊥CE∴∠BEC=∠ADC=90∴∠BCE+∠CBE=90∵∠ACB=90∴∠BCE+∠ACD=90∴∠CBE=∠ACD∵AC=BC∴△ACD≌△CBE(AAS)∴BE=CD,
∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF
证明:图略法1、AD⊥BC,且AD=CD,CE=AB,可得BD=DE,得△ABD≌△CED,得∠BAD=∠ECD,∠BAD+∠ABD=90°,则∠ECD+∠ABD=90°,则△FCB是RT△,即CF⊥
因为AE=DE,AF平行CD,所以FE=CE又BC=BF,BE共用,所以三角形BEF与三角形BEC全等所以角BEF=角BEC=180/2=90度所以BE垂直于CF完毕
角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd
因为AD垂直BC,所以,角ABD=角ADC=90度,角C+角CAD=90度.因为BE垂直AC,所以,角C+角CBE=90度,所以,角CAD=角CBE.又因为BD=AD,所以,三角形FBD全等于三角形C
∵△ABC是等边三角形∴∠ABC=∠ACD=60°,AB=BC∵BD=CE∴△ABD≌△BCE∴∠BDO=∠BEC∴∠FOE=∠BOD=∠BCE=60°∵EF⊥AD,∠EFO=90°∴Rt△FOE中,
图中BF与CE相等∵∠ACB=90°∴∠ACE+∠FCB=90°∵AE⊥CF∴∠AEC=90°∴∠ACE+∠EAC=90°∴∠FCB=∠EAC∵BF⊥CF∴∠CFB=90°∴∠FCB+∠CBF=90°
因为AE垂直BC于点E,且BE=CE所以AE是三角形ABC的垂直平分线所以AC=AB=CB即是三角形ABC是等边三角形.所以角ABC=60度即角ADB=30度所以.BD=2又根号3
设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(
CD=BC在三角形ACF与ACE中,角1=角2,AC=AC,再加两个直角,两个三角形相似所以CF=CE,在三角形CDF与CEB中,又BE=DF,两个直角,两个三角形相似所以CD=BC
设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(
AD=CB,BE=DF,所以RT△ADF≌RT△CBE,所以∠DAF=∠BCE,∴AD//BC.
∠ABD=90-∠A=90-∠CBE=∠C∠D=90=∠EAB=BC三角形ADB全等于三角形BECAD+CE=DB+BE=DE
AB=AC,AD=DART△ABD≌RT△ACD(HL)所以∠BAE=∠CAE,又AB=AC,∠BAE=∠CAE,AE=EA△ABE≌△ACE(SAS)即,BE=CE
连接AE因为EF是AD的垂直平分线,所以DE=AE所以∠ADE=∠DAE又因为∠ADE=∠B+∠DAB∠DAE=∠CAE+∠DACAD是△ABC的角平分线,所以∠DAB=∠DAC所以∠B=∠CAE又因
连接AD∵BE⊥AC,CE⊥AB(已知)∴∠BFD=∠CED=90°(垂直定义)∴在△BDF和△CDE中{∠BFD=∠CED(已证)∠BDF=∠CDE(对顶角)BD=CD(已知)∴△BDF≌△CDE(
连结OE∵OA=OE∴∠E=∠OAE∵AE平分∠OAD∴∠E=∠OAE=∠DAE∴OE‖AD∵AD⊥BC∴OE⊥BC∴弧CE=弧BE
证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠