已知fx=2cos(x-三分之π) 2sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:58:51
f(x_=(cosx+sinx)(cosx-sinx)=cos²x-sin²x=cos2x所以T=2π/2=πf(α/2)=cosα=1/3sin²α+cos²
f(x)=sin(2x+三分之派)+sin(2x-三分之派)+2cos方x-1=sin2x*cos(3分之π)+cos2x*sin(3分之π)+sin2x*cos(3分之π)-cos2x*sin(3分
求最大值时候要看整个定义域内的最大值因为在定义域内函数新增后减所以在取得的最大值应该是在函数波形的峰值处即x=pi/3时取得最大值fx=1再问:哦,明白了,谢谢
令t=sinx则f=(1-t^2)+2t=-t^2+2t+1=-(t-1)^2+2因为|t|
∵cos(x-π/6)=-√3/3∴cosx+cos(x-π/3)=cosx+cosxcosπ/3+sinxsinπ/3=cosx+(1/2)cosx+(√3/2)sinx=(3/2)cosx+(√3
cos(x-π/6)=-√3/3cosx+cos(x-π/3)=cos(x-π/6+π/6)+cos(x-π/6-π/6)=cos(x-π/6)cosπ/6-sin(x-π/6)sinπ/6+cos(
fx=2cosxsin(x+π/3)-√3sin^2x+sinxcosx+1=2cosx(√3/2cosx+1/2sinx)-√3sin^2x+sinxcosx+1=√3cos^2x-√3sin^2x
答:f(x)=2cos²(x/2)-sinx=cosx+1-sinx=-√2*[(√2/2)*sinx-(√2/2)*cosx]+1=-√2*(sinxcosπ/4-cosxsinπ/4)+
因为cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb相加得cos(a+b)+cos(a-b)=2cosacosb即cosacosb=[cos(a
f(x)=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)-2sinxcosx=cos(3x/2+x/2)-2sinxcosx=cos2x-sin2x=√2(√2/2*cos2x
(1)f(x)=[cos(x-π/6)]^2-(sinx)^2f(π/12)=(cos(π/12))^2-(sin(π/12))^2=cos(π/6)=√3/2(2)f(x)=[cos(x-π/6)]
f(x)=cos(2x-π/3)-cos2x=1/2cos2x+√3/2sin2x-cos2x=√3/2sin2x-1/2cos2x=sin(2x-π/6)最小正周期T=2π/2=π(2)0
f(x)=2cos(x+π/3)[sin(x+π/3)-√3cos(x+π/3)]=2cos(x+π/3)sin(x+π/3)-2√3cos²(x+π/3)=sin(2x+2π/3)-√3[
f(x)=(√3/2)sin2x-(1/2)[(cosx)^2-(sinx)^2]-1=(√3/2)sin2x-(1/2)cos2x-1=sin(2x-π/6)-1f(x)的最大值是0,最小值是-2,
第一个使用正弦的倍角公式第二个使用余弦的倍角公司完了配方就出来了不会你就Hi我吧
f(x)=2sin(x-π/6)cosx+2cos²x=(2sinxcosπ/6-2cosxsinπ/6)cosx+2cos²x=√3sinxcosx-cos²x+2co
3sinx+cos(π/3+x)=3sinx+1/2cosx-v3/2sinx=(3-v3/2)sinx+1/2cosx根据公式asinx+bcosx=v(a^2+b^2)sin(x+θ)v[(3-v
f(x)=√3sin2x+cos2x=2sin(2x+π/6)∴f(x0)=2sin(2x0+π/6)=6/5∴sin(2x0+π/6)=3/5∵x0∈[π/4,π/2]∴2x0+π/6∈[2π/3,
解f(x)=2cos^2x+2√3sinxcosx-1=√3sin2x+cos2x=2sin(2x+π/6)∴最小正周期为:2π/2=π再答:不懂追问再问:在三角形ABC中,角ABC所对的边分别是ab