已知xn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:15:55
已知xn
数列极限已知数列xn=1+xn-1/(1+xn-1),x1=1,求该数列极限

设极限为u,则有limxn=limx(n-1)=un→∞n→∞u=1+u/(1+u)u²-a-1=0u=(1+根号5)/2说明:因为xn>0,负数解[1-根号5]/2已经舍去.

已知0<X1<3,Xn=根号下Xn-1(3-Xn-1)证明{Xn}极限存在,并求极限

证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2所以{xn}有界又x(n+1)=√[Xn(3-Xn)]>=√[Xn(3-3/2)]=√(3/2)xn

已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+

x1x2..xn均为整数应是x1x2..xn均为正数吧,由均值不等式得:(x2/√x1)+√x1≥2√x2,(x3/√x2)+√x2≥2√x3,...(x1/√xn)+√xn≥2√x1,把上面n个不等

已知数列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(

列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(Xn+1),Sn=Y1+Y2+...+Yn,则aSn+Pn=_1____

已知数列xn满足x1=4,x(n+1)=(xn^2-3)/(2xn-4)

x(n+1)-3=(x2n-6xn+9)/(2xn-4)=(xn-3)2/2(xn-2)=(xn-2-1)2/2(xn-2)x(n+1)-3=(xn-2)/2-1+1/2(xn-2)≥1-1=0(xn

已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{xn}或者对任意正整数

由已知可得x(n+1)-1=(x(n)-1)^3/(3x(n)^2+1),所以当x(n)>1时可推出,x(n+1)>1;而当x(n)1;当x11,从而有x(n+1)/x(n)

已知x1、x2、xn∈(0,+∞),求证:x1^2/x2+x2^2/x3+…+xn-1^2/xn+xn^2/x1≥x1+

证明:x1,x2,...xn>0,使用均值不等式,(x1)^2/x2+x2≥2x1,(x2)^2/x3+x3≥2x2,...(xn)^2/x1+x1≥2x1,上述所有式子相加再两边除以2,得到(x1)

求证一数列是柯西数列数列Xn,已知X1=1,X(n+1)=1+1/(Xn+1)求证Xn是柯西数列 并且求出Xn的极限

∵数列{x[n]},x[n+1]=1+1/(X[n]+1)∴采用不动点法,设:y=1+1/(y+1),即:y^2=2解得不动点是:y=±√2∴(x[n+1]-√2)/(x[n+1]+√2)={(x[n

已知X(n+1)=(3+4Xn)/(2+Xn),求数列{Xn}的通项公式?

楼主,你好!如果你想构造数列的话可以使用待定系数法.就是设两边同时减一个数t,原式就化为X(n+1)-t=[(4-t)Xn+3-2t]/(2+Xn),然后让等号右边分子和等号左边式子的对应系数相等,解

已知数列{xn}由下列条件确定:x1=a>0,xn+1=1/2(xn+a/xn)(n∈N+)求证

首先有xn>01,xn+1-√a=1/2(xn-2a-a/xn)=1/2(√xn-√(a/xn))^2≥02,xn+1-xn=1/2(a/xn-xn)=1/(2xn)*(a-xn^2)≤0

已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n

当n=1时|X2-X1|=1/6成立当n≥2时易知0<Xn-1<1所以1+Xn-1<2所以Xn=1/(1+Xn-1)>1/2又有|Xn+1-Xn|=|1/(1+Xn)-1/(1+Xn-1)|=|Xn-

数学网已知X1=4 Xn+1=(Xn*Xn-4)/(2Xn-4)求Xn的通项公式

x(n+1)=(xn+2)(xn-2)/2(xn-2)2x(n+1)=xn+22x(n+1)-4=xn+2-42[x(n+1)-2]=xn-2[x(n+1)-2]/(xn-2)=1/2所以xn-2是等

已知各项都是正数的等比数列{Xn},满足(Xn)^an=(Xn+1)^an+1=(Xn+2)an+2.证明数列{

(1)(Xn)^an=(Xn+1)^an+1=(Xn+2)an+2=k得Xn=k^(1/an),X(n+1)=k^(1/a(n+1)),X(n+2)=k^(1/(an+2))由等比数列{Xn}可知:(

已知函数f(x)=3x/(x+3),数列Xn的通项由Xn=f(Xn-1)确定 求证{1/Xn}是等差数列.

Xn=f(Xn-1)即:Xn=3X(n-1)/[X(n-1)+3]1/Xn=1/3+1/X(n-1)所以:1/Xn-1/X(n-1)=1/3所以数列:{1/Xn}为等差数列,公差为1/3

数列与不等式的题目已知数列Xn满足 Xn=-(1/2)Xn-1^2 +Xn-1 +1,1

x(n)=(-1/2)(x(n-1)-1)^2+3/2,x(n)-1=(-1/2)(x(n-1)-1)^2+1/2,因为(根2)-1=(-1/2)((根2)-1)^2+1/2,上面的两式相减,消去1/

已知f(x)=3x/x+3 数列{xn} xn的通项公式由xn=f(xn-1)确定 求{sn}

∵f(x)=3x/(x+3)且Xn=f[X(n-1)]x1=0.5=3/6;X2=f(X1)=3X1/(X1+3)=3/7X3=f(X2)=3X2/(x2+3)=3/8;X4=f(X3)=3X3/(X

已知函数{xn}满足X(n+1)=2xn^2+4xn+1,x1=1,求{xn}的通项公式

x(n+1)+1=2xn^2+4xn+2=2(xn+1)^2两边取对数得lg[x(n+1)+1]=lg2+2lg(xn+1)lg[x(n+1)+1]+lg2=2[lg(xn+1)+lg2]{lg(xn

已知数列{xn}满足x1=3,x2=x1/2,...,xn=1/2(xn-1+xn-2),n=3,4,...,则xn等于

以下用^b表示b次方.x(n)=(x(n-1)+x(n-2))/2,两边减x(n-1)得x(n)-x(n-1)=(x(n-1)-x(n-2))*(-1/2)所以{x(n)-x(n-1)}是以x(2)-

已知x1=1/3 xn+1=xn2+xn-1/4求证 数列lg(xn+1/2)是等比数列

∵x(n+1)=x²n+xn-1/4∴x(n+1)+1/2=x²n+xn+1/4=(xn+1/2)²两边取对数:lg[x(n+1)+1/2]=lg(xn+1/2)