已知三次函数fx=x3 ax2 6x b,a.b为实数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:42:58
已知三次函数fx=x3 ax2 6x b,a.b为实数
已知函数fx=x三次方+ax²+bx+c在x=-1与x=2处都取得极值 求a,b的值及函数fx单调区间

额先求导把x=-1与x=2代入求导后的式子得a,b值然后再求单调区间f’(x)=3x^2+2ax+b因为f’(-1)=f’(2)=0所以a=-1.5,b=-6令f’(x)>0,得x2所以增区间:(负无

已知函数f=x三次方减4x平方求函数fx在区间0:4的最大值和最小值

f'(x)=3x^2-8x=x(3x-8)=0--->x=0,8/3f(8/3)=512/27-256/9=-256/27为极小值f(0)=0为极大值f(4)=64-64=0因此最大值为0,最小值为-

已知函数=x三次方减4x平方求函数fx在区间0:4的最大值和最小值

求导做.fx导数=3x^2-8x当导数=0,x=0或8/3当0《x《8/3,导数《0,单调递减;同理得递增区间所以在区间0:4,可做出图像,算x=0,8/3,4这三值,进行比较得出答案

已知函数=x三次方减4x平方求函数fx在区间0:4的最大值和最小值.

f'(x)=3x^2-8x=x(3x-8)=0--->x=0,8/3f(8/3)=512/27-256/9=-256/27为极小值f(0)=0为极大值f(4)=64-64=0因此最大值为0,最小值为-

已知函数fx=1/3x三次方-ax方+1 若a>0,函数y=fx在区间(a,a方-3)上存在极值,求a

函数fx=1/3x三次方-ax方+1得:f'(x)=x方-2ax令f'(x)=0得:x=0,x=2a又a>0,函数y=fx在区间(a,a方-3)上存在极值,则a

已知函数fx=x三次方+ax方-x+c 且a=f'(2/3) 1、求a的值 2、求函数fx的单调区间

解题如下:f'=3x²+2ax-1把x=2/3代入得a=4/3+4a/3-1,解得a=-1f=x^3-x²-x+cf'=3x²-2x-1令f'=0,解得x=-1/3或者x

已知函数fx=1/3x的三次方-alnx-1/3 ①当a=3时,求曲线y=fx在点(1,f

①a=3fx=1/3x立方-3lnx-1/3f'x=x平方-3/x斜率=1-3=-2f(1)=1/3-0-1/3=0所以切线方程为y-0=-2(x-1)即y=-2x+2②f'(x)=x

已知函数fx=x三次方-3x平方-9x 3,gx=fx-m在(-2,5)上有三个零点,则实数m取

g(x)=x³-3x²-9x+3-mg'(x)=3x²-6x-9=3(x-3)(x+1),得极值点x=3,-1g(3)=-24-m为极小值;g(-1)=8-m为极大值端点

已知函数fx=ax三次方+bx+7,若f(5)=3,则f(-5)=多少?

令g(x)=ax³+bxg(x)=-g(-x)所以g(x)是奇函数f(5)=g(5)+7=3g(5)=-4f(-5)=g(-5)+7=-g(5)+7=4+7=11

已知函数fx=ax五次+bx三次+cx-1,若f(-3)=5,则f(3)=

fx=ax五次+bx三次+cx-1,f(-3)=5∴-243a-27a-3a-1=5即-243a-27a-3a=6243a+27a+3a=-6∴f(3)=243a+27a+3a-1=-6-1=-7

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx是定义在R上的奇函数 当x>0是时 fx=x的平方+三次根号下x 求fx

x0则有f(-x)=(-x)^2+三次根号下(-x)又f(x)为奇函数,所以f(-x)=-f(x)所以-f(x)=f(-x)=(-x)^2+三次根号下(-x)即f(x)=-x^2-三次根号下x所以有f

已知函数fx=x的三次方+2x的平方+x

f(x)=x^3+2x^2+x>=ax^2=>x^3+(2-a)x^2+x>=0对于R+恒成立因为x>0,所以只要g(x)=x^2+(2-a)x+1>=0对于R+恒成立抛物线g(x)当x>0的时候g(

已知函数fx =(x-a)lnx

fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数y=fx是偶函数

解由函数y=fx是偶函数,在x属于(0,正无穷)上递减,则函数y=f(x)在x属于(负无穷大,0)是增函数,即当x1,x2属于(负无穷大,0)且x1<x2时,f(x1)<f(x2),且f(x1),f(

已知函数fx=2sin(wx+

第一题A.第二题B

已知函数fx= -1,x

解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1