已知函数f x=x平方减3ax加2a平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:59:05
已知函数f x=x平方减3ax加2a平方
已知函数fx等于cos平方x加二倍根号三sinxcosx减sin平方x求函数fx的最小正周期和单调递增区间!

f(x)=[(cosx)^2-(sinx)^2]+√3sin2x=cos2x+√3sin2x=2sin(2x+π/6),最小正周期T=π,由-π/2+2kπ≤2x+π/6≤π/2+2kπ,k∈Z解得:

已知函数fx等于括号m减1x平方加3x加括号2减n,且此函数为奇函数求m,n的值

f(x)=(m-1)x^2+3x+(2-n)为奇函数则常数项和偶次方项为零2-n=0,m-1=0m=1,n=2

已知函数fx等于ax平方加2x减a,若对任意a属于[-1,1].fx大于0恒成立,求x取值范围

因为是对于a属于[-1,1]恒成立,所以应看作是关于a的函数,而在本式中可以看作是关于a的一次函数,要使得大于0恒成立,只要让a=-1,a=1都成立即可.所以x^2+2x-1>0;-x^2+2x+1>

已知函数fx=2|x-2|+ax有最小值

分段讨论当x>=2时,f(x)=(2+a)x-4;当x0,a-2

已知函数fx等于inx减x的平方加ax在x等于1处取得极值.求实数a的值和函数Fx的单调区间?

f(x)=lnx-x^2+axf'(x)=1/x-2x+ax=0x=1,a=1单调递增:(0,1)单调递减:(1,+无穷大)

已知函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值,且函数fx只有一个零点,求b

解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)

已知函数fx=2ax立方-3x平方,a>0

f(x)=2ax³-3x²求导f'(x)=6ax²-6x=6x(ax-1)a>0f'(x)>0得x1/a所以fx在区间(-无穷,0)是增函数.

已知函数fx=ax减x平方减lnx ,a属于R 当a等于零时 判断fx的单调性 急

当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)

已知函数fx=ax+b分之x平方,ab为常数,且方程fx-x+12=0有两个实数为3 4的根,求

题目已知函数f(x)=ax+b分之x²(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4求(1)函数f(x)的解析式(2)设k>1,解关于x的不等式f(x)<[(k+

已知函数fx=lnx,gx=二分之一ax的平方加bx ,若a=-2,函数hx=fx-gx在其定义域

由已知函数f(x)=lnx,定义域x>0;函数g(x)=ax2/2+bx,若a=-2,那么g(x)=-x2+bx;所以函数h(x)=f(x)–g(x)=lnx–(-x2+bx)=lnx+x2–bx,定

已知函数fx=ax的立方加上bx的平方加cx加d在x=0在处取得极值,曲线y=fx过原点和点p(-1,2)若该曲线在点p

对y=f(x),对y求导,令其为g(x),得g(x)=y'=3ax^2+2bx+c另外有g(0)=c=0;f(0)=d=0;f(-1)=-a+b=2g(-1)=3a-2b=-3求得a=1,b=3,故f

已知函数fx=x的平方+2ax+2 x属于【-5 5】当a=-1时求函数fx的最大值 最小值

函数f(x)的最大值37,最小值1储备知识:对于二次函数y=ax²+bx+c(a>0),当m≤x≤n时1)若m≤-b/2a≤n【直线x=-b/2a是二次函数y=ax²+bx+c的对

已知函数fx=x^3-x^2+ax+b

再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=x的平方+ax-lnx(a属于R) 1,若函数fx在《1,2》上是减函数,求实数a的取值

希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以

已知函数fx=x³+ax²+x+1

f'(x)=3x²+2ax+1≤0,x∈(-2/3,-1/3)2ax≤1-3x²2a≥1/x-3x因为g(x)=1/x-3x在(-2/3,-1/3)上单调递减,所以g(x)再问:f