已知函数f(x)=sin( x )( 小于0,0小于等于 小于等于π)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:19:56
①原式=f(x)=2cos2x+sinx^2=2cos2x+1-cos2x/2=3/2cos2x+1/2故f(π/3)=3/2*cos2π/3+1/2=-3/4+1/2=-1/4②依f(x)=3/2c
f(x)=sin²x+sinxcosx=[1-cos(2x)]/2+sin(2x)/2=sin(2x)/2-cos(2x)/2+1/2=(√2/2)sin(2x-π/4)+1/2最小正周期T
其图像经过点M(π/3,1/2)代入f(x)=sin(x+φ)1/2=sin(π/3+φ)∵0<φ<π∴π/3<π/3+φ<4π/3∵1/2=sin(π/3+φ)∴π/3+φ=
1.sin(x-π/6)2.可知半周期为2π/3,又在区间(0,π/3)上是增函数,故ω>0,2π/ω=4π/3从而ω=1.5
1、由于函数g(x)=sin(2(x-a)+π/3)为偶函数,所以g(x)的图像关于y轴对称,即函数g(x)当x=0时取得最值,所以g(0)=±1,解得sin(π/3-2a)=±1,sin(2a-π/
∵f(x)=2sin(π-x)cosx=2sinxcosx=sin2x1、最小正周期T=2π/2=π.2、∵-π/6≤x≤π/2∴-π/3≤2x≤π,∴-√3/2≤f(x)≤1,∴最大值1,最小值-√
f(x)=sin2x-2sin^2x=sin2x+cos2x-1=√2sin(2x+π/4)-1.(1)T=2π/2=π.(2).当2x+π/4=2kπ+π/2,k∈Z,即x=kπ+π/8,k∈Z时,
(1)f(x)=√3(1-cos2x)-1/2sin2x+√3/2cos2x=√3-1/2sin2x-√3/2cos2x=√3-sin(2x+π/3)∴最小正周期T=2π/2=π单调增区间:π/2+2
f(x)=cosx+sinxf(x)=√2sin(x+π/4)(1)递增区间:2kπ-π/2≤x+π/4≤2kπ+π/2得:2kπ-3/4π≤x≤2kπ+π/4递增区间是:[2kπ-3π/4,2kπ+
周期是派最大值是2X=1/3派+K派(-1/6派+K派,1/3派+K派)
f(x)=2sin(π-x)sin(π/2-x)=2sinxcosx=sin2x1)最小正周期=2π/2=π2)在区间[-派/6,派/2]上x=π/4时,有最大值=sinπ/2=1x=-π/6时,有最
f(x)=sin2x+cos2x-1=√2sin(2x+π/4)-1.1、最小正周期是π,最大值时2x+π/4=2kπ+π/2,即x=kπ+π/4,k是整数.再问:已知函数f(x)=2sin(∏-X)
f(x)=2sinx*sin(π/2+x)-2sin^2x+1=2sinxcosx+cos2x=sin2x+cos2x=√2sin(2x+π/4)因为f(x0/2)=根2/3所以sin(x0+π/4)
首先:定义域只有这一个,X+π/4≠2Kπ,所以X≠-π/4+2kπ..附上值域,化简原函数:f(X)=cos2X/[√2/2(sinX+cosX)]f(x)=(cos²X-sin²
因为f(x)=sinx+cosx=√2sin(x+π/4)第一题T=2π/1=2π第二题当sin(x+π/4)=1时,为最大值,即f(x)=√2sin(x+π/4)=-1时,为最小值,即f(x)=-√
(1)偶函数,则f(x)=f(-x)即:sin(2x+φ)=sin(-2x+φ),根据积化和差公式sin(2x)*cos(φ)+cos(2x)*sin(φ)=sin(-2x)*cos(φ)+cos(-
∵函数f(x)=sin(ωx+φ)(w>0,0≤φ≤π)是R上的偶函数∴f(-x)=f(x)→sin(-wx+φ)=sin(wx+φ)→-sinωxcosφ=sinωxcosφ∵sinωx不恒等于0,
cos2x=sin(π/2-2x)=2sin(π/4-x)cos(π/4-x)cos2x/[sin(π/4-x)]=2sin(π/4-x)cos(π/4-x)/[sin(π/4-x)]=2cos(π/
f(x)=2sin(派-x)cosx=2sinxcosx=sin2x最小正周期=2pi/2=pi(pi就是“派”)f(-pi/6)=sin(-pi/3)=-(根号3)/2f(pi/2)=sin(pi)
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2