已知函数FX=(AX^ BX C)E的X次方在(0.1)上单调递减
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:44:07
答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:
第一种情况是 在-5左边或者正好在-5上,不知道怎搞的拍出来就没有了.高考顺利~再问:thankyou,,你是刚刚做的么!?。。。thank再答:我大一,刚刚看到好熟悉,就做了一下~再问:t
f(x)=ax^2+2ax+4=a(x+1)^2-a+4∵x10∴f(x1)-f(x2)=[a(-x2+1)^2-a+4]-[a(x2+1)^2-a+4]=a(-x2+1+x2+1)(-x2+1-x2
分段讨论当x>=2时,f(x)=(2+a)x-4;当x0,a-2
fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o
解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0
解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,
1f(x)=(1-x)/ax+lnx=1/(ax)-1/a+lnx,a是正实数,定义域x>0f'(x)=1/x-1/(ax^2),当x=1/a时,f'(x)=0,当00所以当x∈[1/a,inf]时,
1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
你的做法是先分别求出a和c的取值范围,再乘上系数来相加.想法正确,但这却是错误的做法你求出的0≤a≤3是正确的,1≤c≤7也是正确的,但这两个式子是不能用来运算的.因为a和c的取值是相互约束的,而你只
再问:...好像不太对
fx=1/2*ax^2-2ax+lnx有两个极值点x1x2,则fx'=ax-2a+1/x=0有x1x2两个零点.由函数定义域知x>0,所以,ax^2-2ax+1=0有x1x2两个零点.所以,(2a)^
再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
f'(x)=3x²+2ax+1≤0,x∈(-2/3,-1/3)2ax≤1-3x²2a≥1/x-3x因为g(x)=1/x-3x在(-2/3,-1/3)上单调递减,所以g(x)再问:f
f'(x)=2x+a>0x>-a/2-a/2=-2a=4