已知函数fx=ax²-2根号4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:57:39
已知函数fx=ax²-2根号4
已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!

答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:

已知函数fx=log1+根号2(x+根号x平方+1)求fx的定义域

2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调

已知函数fx=ax*2+2ax+4(a.>0)若x1

f(x)=ax^2+2ax+4=a(x+1)^2-a+4∵x10∴f(x1)-f(x2)=[a(-x2+1)^2-a+4]-[a(x2+1)^2-a+4]=a(-x2+1+x2+1)(-x2+1-x2

已知函数fx=2|x-2|+ax有最小值

分段讨论当x>=2时,f(x)=(2+a)x-4;当x0,a-2

已知函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值,且函数fx只有一个零点,求b

解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=xlnx+ax^2,a€r

1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0

已知函数fx=2ax^+4-3-a a属于r 当a=1时 函数fx在-1 1上的最大值

a=1,f(x)=2x/(x²+1)f'(x)=[2(x²+1)-2x(2x)]/(x²+1)=2(1-x²)/(x²+1)f'(0)=2在原点处的切

已知函数fx=ax^2-c,-4

你的做法是先分别求出a和c的取值范围,再乘上系数来相加.想法正确,但这却是错误的做法你求出的0≤a≤3是正确的,1≤c≤7也是正确的,但这两个式子是不能用来运算的.因为a和c的取值是相互约束的,而你只

已知函数fx=lnx+ax^2+x,gx=e^x-ax

再问:...好像不太对

急 已知二次函数fx=x2+ax+b 且方程fx=14有两个根-2 4

x^2+ax+b-14=0的两个根为-2,4.所以-2+4=-b/a=-a,所以a=-2,-2*4=c/a=b-14b=6所以方程为f(x)=x^2-2x+6f(x)=x^2-2x+6在x∈R上有最小

已知函数fx=ax+lnx (a属于R) (1)求fx的单调递增区间 (2)已知gx=4^

推荐回答1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0

设fx=1/2*ax^2-2ax+lnx ,已知函数fx有两个极值点x1x2

fx=1/2*ax^2-2ax+lnx有两个极值点x1x2,则fx'=ax-2a+1/x=0有x1x2两个零点.由函数定义域知x>0,所以,ax^2-2ax+1=0有x1x2两个零点.所以,(2a)^

已知函数fx=x^3-x^2+ax+b

再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==

已知函数fx=x^2-ax+a/x,x属于1到正无穷,1)当a=4时,求函数fx的最小值

f(x)=(x^2-ax+a)/x=x-a+a/x当a=4时,f(x)=x+4/x-4≥2√-4=0函数f(x)的最小值=0f(x)>0即(x^2-ax+a)/x>0(x∈[1,+∞),)即x^2-a

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx等于ax平方-4分之3ax+b fx等于2 f1等于1 - 百度

fx等于2这个是错的吧,应该是某个X值等2,直接把这个值了X=1时f1等于1代进去,然后解二元一次方程,很简单.

已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取

对函数fx求导,得到:(2ax-x^2)ae^ax+(2a-2x)e^ax=(2a^2×x-ax^2+2a-2x)e^axfx在区间(根号2,2)上单调递减,故(根号2,2)区间上有:(2a^2×x-

已知函数fx等于x^2 ax

f'(x)=2x+a>0x>-a/2-a/2=-2a=4