已知函数fx=x2 2x a当a=1 2时,求不等式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:26:24
已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值(1)解析:∵函数fx=ln(x)-ax(a∈R)令a=2,则函数fx=ln(x)-2
证明:任取R上的x1,x2,且x12,所以f(x2-x1)>2,f(x2-x1)-2>0所以f(x2)-f(x1)>0所以f(x1)
1、0或1个.假设方程f(x)=0有两个根m,n,则有m≠n,且f(m)=f(n)=0,当mf(n)这与f(m)=f(n)相矛盾,所以方程f(x)=0的根有0或1个因为对于任意a,b∈A,当a0当x>
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
a=1,f(x)=2x/(x²+1)f'(x)=[2(x²+1)-2x(2x)]/(x²+1)=2(1-x²)/(x²+1)f'(0)=2在原点处的切
令t=sinx则f=(1-t^2)+2t=-t^2+2t+1=-(t-1)^2+2因为|t|
将a=1带入函数中,变形为fx=(2x-1)/(2x+1)其中x不等于-1/2,否则无实意f’x=[(2x-1)'(2x+1)-(2x+1)'(2x-1)]/(2x+1)^2f’x=[2(2x+1)-
(2)f(x)=x-(x+1)ln(x+1)f'(x)=1-ln(x+1)-1=-in(x+1)令f'(x)=0-ln(1+x)=0得x=0f’(x)为递减函数在(-1/2,0)f'(x)>0在(0,
当a=-1时,g(x)=-lnx/x求导后得到g‘(x)=(lnx-1)/x^2令g‘(x)=(lnx-1)/x^2>0得到x>e令g‘(x)=(lnx-1)/x^2
fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错
函数f(x)的最大值37,最小值1储备知识:对于二次函数y=ax²+bx+c(a>0),当m≤x≤n时1)若m≤-b/2a≤n【直线x=-b/2a是二次函数y=ax²+bx+c的对
最大值为2将a=0带入式子=(4x)/(x^2+1)1)当x不等于0时,分子分母同时除以x,式子=4/(x+1/x)分母用均值不等式>=2,那么整个式子就
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
不需要分类啊,a>2,x属于[1,2],则:x-a再问:能否把整个详细过程写出来感激不尽再答:
f(x)=(x^2-ax+a)/x=x-a+a/x当a=4时,f(x)=x+4/x-4≥2√-4=0函数f(x)的最小值=0f(x)>0即(x^2-ax+a)/x>0(x∈[1,+∞),)即x^2-a
1)当a=2时,函数f(x)=2lnx-x^2f(x)的导数为(-2x^2+2)/xx1/2(1/2,1)1(1,2)2f(x)的倒数++0--f(x)↑极大值1↓∴函数y=fx在[1/2,2]上的最
f'(x)=1-a/x=(x-a)/xf(x)的定义域是x>0谈论a的取值范围a0此时f'(x)恒>0f(x)单调递增,没有极值当a>0时令f'(x)>=0x>=a∴f(x)增区间是[a,+∞)减区间