已知函数fx=3x²+1,在x=1,△x=0.1时
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:57:04
再问:已知函数fx满足3f(x)-2f(1-x)=2x+3,求解析式
f′(x)=3x²-3;(1)f(x)≥0;x≥1或x≤-1;单调递增区间为[1,﹢∞)∪﹙-∞,-1]单调递减区间为[-1,1](2)f(-3)=-27+9=-18;f(2)=8-6=2;
x属于(0,正无穷),f'(x)=lnx+1在(0,正无穷)上f'(x)>0,f(x)是增函数x=1时f(x)取到最小值f(1)=1*ln1=0
设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0
f'(x)=3x²-2ax+3=0在[1,+∞)上是增函数,有两种可能:(1)3x²-2ax+3恒≥0∆=4(a²-9)≤0,-3≤a≤3(2)3x²
解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)
函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1
由f(x)=x^3-ax^2-3x得f'(x)=3x^2-2ax-3因为f(x)在[1,+∞)是单调递增,即f'(x)在[1,+∞)上恒大于等于0.对于f'(x)=0,Δ=4a^2+36>0,因此f'
貌似没这解吧,当x>2时,f(x)=3x-3.当½≦x≦2时,f(x)=x+1.当x
(1)m=4,则函数f(x)=x|x-4|+2x-3,当x-4>0时,f(x)=x^2-2x-3,定义域x(4,5],f(x)最小值=1,若x=5,则f(x)最大值=12;当x-40时,f(x)>=1
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
奇函数然后取fx2–fx1再答:谢谢。
当x≤1时f(x)=3x=2x=2/3当x>1时f(x)=-x=2x=-2因为x>1,所以则时无解所以x=2/3再问:那个是3x方再答:额.f(x)=3x^2=2x^2=2/3x=±√6/3±√6/3
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1
令y=x+1,则f(y)=3(x+1)-2=3y-2即f(x)=3x-2再问:爲什麽是f(y)=3(x+1)-2再答:y=x+1,所以f(y)=f(x+1)=3(x+1)-2=3y-2再问:爲什麽是-