已知圆O是三角形的外接圆,FH是圆O的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:32:16
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
设三角形AOB的外接圆的方程为:x2+y2+Dx+Ey+F=0,把A(4,0),B(0,3),O(0,0)三点代入,得:16+4D+F=09+3E+F=0F=0,解得D=-4,E=-3,F=0,∴三角
首先这是个直角三角形,其次存在一点到三点的距离相等.再答:再问:������Ҫ���д���������再问:������Ҫ���д���������再答:���ˡ���������һ������ôѧ
1.设圆C的方程为x^2+y^2+Dx+Ey=0,则16+4D=0,4+2E=0,解得D=-4,E=-2,∴圆C的方程是x^2+y^2-4x-2y=0,即(x-2)^2+(y-1)^2=5,2.设l的
1)设A(y²/2,y)B(y²/2,-y)根据OA=AB☞y=2√3,AB=4√3根据正弦定理2R=AB/sin∠AOB=8,R=4那么目标:(x-4)²+
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
由正弦定理:SinB/AC=2rSinB/2=3所以SinB=6
证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.如果不理解可以继续追问,您也可以向我们的团
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°
证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
再问:最后看不清再答: 再答:这样呢再问:看清了
由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
正三角形吗再问:已补图。你看看吧再答:没有看到图