已知在等腰直角三角形ABC中∠C等于90度,∠A等于30度,在直线BC或AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:20:01
△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9
因为CF垂直于BF,AE垂直于CF所以∠CFB等于∠AED等于90度又因为∠ADE等于∠BDF所以∠EAD等于∠DBF因为三角形ABC是等腰直角三角形所以∠CAB等于∠CBA等于45度,AC等于BC因
三角形ABC和ECF都是等腰直角三角形,则CA=CB,CE=CF,角ACE=角BCF根据边角边可以得出三角形ACE与BCF全等,所以AE=BF
两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【
因为角ABD=角CBD=二分之一角ABC=22.5度角ADB=角ADC角BAD=角DCE=90度所以角ACE=角ABD=22.5所以角BCF=角BCA+角ACF=67.5所以角F=180-角ABC-角
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:延长AM到F,使MF=AM,连接BF,CF(如图)∵BM=CM,AM=FM,∴四边形ABFC为平行四边形.∴FB=AC=AE,∠BAC+∠ABF=180°又∵∠BAC+∠DAE=180°,∴∠D
再问:问一下,ED=CB与DF=AC哪来的?再答:∵∠CDE=∠DCB∴ED//CF又∠ACB=90°∴∠CED=90°又DF⊥CB∴∠CFD=∠EDF=90°∴四边形CEDF是矩形∴ED=CB,DF
APC绕点C逆时针旋转90°,得△BCO,连结OP由于BC=AC,所以BC与AC重合,亦即点A落到点B处根据辅助线的作法可知△ACP≌△BCO∴∠BCO=∠ACP,∠BOC=∠APC,BO=PA=1,
设CA=CB=3,则A(3,0),B(0,3),E(2,1),F(1,2),C(0,0)CE|=|CF}=根号5,CE*CF=2+2=4,cos∠ECF=4/5,sin∠ECF=3/5,tan∠ECF
延长AM到F,使MF=AM,连接BF,CF∵BM=CM,AM=FM,∴四边形ABFC为平四边形.∴FB=AC=AE,∠BAC+∠ABF=180°又∵∠BAC+∠DAE=180°,∴∠DAE=∠ABF,
1'点N在AB上.因为AB=8,BC=6,所以AM=5.根据三角形中线性质可知点N平分AB.即AN=4.得到三角形BMN的高为3,面积为3BN(中线长度我不会求,初三的学过了么?)2'点N在AC上.若
可以做再答:延长ef交ac于h连接gh.由于acb等腰直角efb等腰直角所以eb垂直bc又因为ef垂直ebac垂直bc所以ehcb是矩形由于eh垂直ac(矩形),角cab是45度,所以ahf是等腰直角
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
如图已知P的速度为1,则是将为t时,CP=t那么,BP=4-t由勾股定理得到:AP=√(t²+16)因为Rt△BDP∽Rt△ACP则,BP/AP=BD/AC===>(4-t)/√(t&
他这是合并同类项(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^Asin(A-B)+sin^Bsin(A-B)=sin^Asin(A+B)-sin^Bsi
证明:因为∠ACB=90度,所以∠ACE+∠BCF=90度因为AE⊥CD所以∠ACE+∠CAE=90度所以∠CAE=∠BCF又因为AC=BC,∠CEA=∠CFB=90度所以△ACE≌△BCF(AAS)
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD