已知复数Z满足Z的绝对值=1 3i-Z,求(1 i)^2(3 4i)^2 2z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:39:51
由|z-1|=|z+(-1)|而|z+(-1)|≥|z|-|(-1)|即1≥|z|-1|z|≤2又||z+(-1)|≤|z|+|(-1)|即1≤|z|+1|z|≥0这样0≤|z|≤2
|z|=√2,那么满足条件的复数z,在以原点为圆心,半径为√2的圆上.
设z=a+bi,z绝对值=2|z|=√(a^2+b^2)=2,a^2+b^2=4.(1)z+3i=a+bi+3i=a+(b+3)iz+3i绝对值=1√a^2+(b+3)^2=1a^2+(b+3)^2=
可设复数z=x+yi.(x,y∈R).由题设可得:(x-3)²+y²=13.且x²+(y-2)²=36.解这个方程组可得:(x,y)=(6,2),或(x,y)=
|z|=1z表示以原点为圆心,1为半径的圆|z^2-z+1|=|(z-1/2)^2+3/4|=|z-1/2|^2+3/4因为|z-1/2|表示z与点(1/2,0)的距离因为点(1/2,0)到圆心的距离
(Z+i)(1+2i)=iZ+i+2iZ--2=i(1+2i)Z=2Z=2/(1+2I)=2(1--2I)/(1+2I)(1--2I)=2(1--2I)/(1+4)=2/5(1--2I)所以IZI=I
设Z=a+bi;得:a+bi+(根号a^2+b^2)==2+i;实部虚部对应相等得:a=3/4;b=1即Z=3/4+i
z=a+bi则|z|²=a²+b²=13z²+4z"=(a²-b²)+2abi+4a-4bi是实数所以虚部2ab-4b=0b(a-2)=0z
设z=a+bi则(3+2i)(a+bi)=3(a+bi)+3+2i即(3a-2b)+(2a+3b)i=(3a+3)+(3b+2)i所以3a-2b=3a+3,2a+3b=3b+2故a=1,b=-3/2所
Z-2+i=Z+1-(3-i)│Z+1│∈[│3-i│-2,│3-i│+2];即│Z+1│∈[(√10)-2,(√10)+2].
最小值是1/2最大值是3/2图解法啊当z=1/2i时有最小值当z=-1/2i时有最大值
画图最简单,z到0和到2+2i的距离相等,那么其实z就是在y=2-x的直线上,离原点最近的点是(1,1),也就是|z|最小值是根号2,sqrt(2)
设z=a+bi(a,b∈R),|z|=a2+b2,代入方程得a+bi+a2+b2=2+8i,∴a+a2+b2=2b=8,解得a=−15b=8,∴z=-15+8i..z=-15-8i.
z=a+bi|z|=1+3i-z|z|=√(a^2+b^2)√(a^2+b^2)=1+3i-a-bi3-b=0b=3√(a^2+9)=1-aa^2+9=a^2-2a+1a=-4z=-4+3i(1+i)
1,设z=x+yi,则复数z对应的点为(x,y),z的共轭复数=x-yi,2(z+z的共轭复数)=z*z的共轭复数+3即为2(x+yi+x-yi)=(x+yi)(x-yi)+3即4x=x^2+y^2+
我教你这种求复数z你可以选择设z=a+bi|z|=√(a^2+b^2)————(你要理解这是实数!与虚部无关)共轭复数z'=a-bi所以|z|-z'=√(a^2+b^2)-a+bi=1-2i对应的实部
可以设z=a+bi,z+1-i=a+1+(b-1)i,|z|=根号((a+1)de平方+(b-1)的平方)=2,(半径是2不是根号2)z-2+i=a-2+(b+1)i,|z-2+i|=根号((a-2)
由题意,(2+3i)*z能和实数比较大小,所以乘积一定是实数显然能和2+3i相乘得到实数的数,一定可以表示成其共轭复数的实数倍所以z一定可以表示为a(2-3i),其中a为实数所以(2+3i)*z=13
设z=a+bi则有a^2+b^2=1所以z+iz+1=(a+bi)+i*(a+bi)+1=(a-b+1)+(a+b)*i所以模(绝对值)等于根号(a-b+1)^2+(a+b)^2=根号2*(a^2+b
Z=4/5+3/5i或Z=-4/5-3/5i