已知如图射线ab cd,p为一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:19:18
(1)连AC、EC、PF,因为PE⊥PCPE=CP∴∠CEP=∠CAP=45°∴A、E、C、P四点共圆∴∠EAC=∠EPC=90°∴∠EAD=∠DAC=45°=∠ABD∴AE∥BF而EF∥CD∥AB∴
存在.讲因为△BEF中的EF那条边也是□PDEF的其中一条边,那P点向G点移动,当P点完全与G点重合的时候,FE那条边已经变成了一条平行线,FE变成了平行线,那△BEF就会变成一个梯形(BEFG).当
1.连FC,因为AD=CDDF=DF∠ADF=∠CDF∴△ADF≅△CDF∴AF=CF∠DAF=∠DCF∴∠BAF=∠BCF(等角的余角相等)又因为∠ABG=∠AFG=RT∠∴∠ABG+∠
要加分啊,是大连中山区的期末考试试题吗?
正方形对角线与边夹角45°,等腰三角形PEB的高为1-x/根号2,底边长为2乘以根号2乘以X面积为相乘除2.X大于0小于根号2X=根号2/2时最大
本题的解随B的点的位置在变化.所以必须假定B点的坐标为(0,1).1.求AB的长:AB=OA-OB=3-1=22.求BP1的斜率:因为BP1的解析式为y=2x+1,所以BP1的斜率为2,表明AB=2A
AC=2√2PQ=2AC=2×2√2=4√2设运动时间为T那么﹙2-T﹚²+﹙2+T﹚²=﹙4√2﹚²=32解得T=2√3秒所以运动时间2√3秒时,PQ=2AC再问:谢谢
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
AB=4BC=3P在AB上0
(1)相似三角形的判定条件是:三个角相等.△APE的∠PAE=△ADQ的∠DAQ(就是同一个角),1个角相等了因为PE‖DQ,所以∠EPA=∠QDA,(两条平行线相交的同位角)2个角想等了因为PE‖D
1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1
(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,
∵AC⊥AB,AB=15,AC=20∴BC=√(400+225)=25,作AE⊥BC交BC于E,则AE=15*20/25=12,BE=15*15/25=9PE=x-BE=x-9AE^2+PE^2=AP
∵当∠A与∠O的和小于90°时,三角形为钝角三角形,∴0°<∠A<60°,∵当∠A大于90°时候此三角形为钝角三角形,∴此时90°<∠A<150°.故答案为:0°<∠A<60°或90°<∠A<150°
(1)如图1,∵矩形ABCD,∴∠A=90°,∴BE为直径,∴OE=OB,∵AP=BP,∴OP∥AE,AE=2PO,∴∠OPB=∠A=90°,即OP⊥AB.(2)此时直线CD与⊙O相切.理由:如图1,
(1)在△CPD和△BCP中,PC=PC,BC=CD,∠BCP=∠PCD,所以△CPD全等于△BCP(SAS),所以PD=BP,又因为PE=PB,所以PE=PD.所以∠PDC=∠PBC,又因为PE=P
⑴,AB=BC=CD=DA.AO=OE=OB.FB=FE.PA=PE⑵周长=CD+DP+PF+FC=CD+DP+PE+EF+FC=CD+DP+PA+BF+FC=CD+DA+BC=6√3
p位于c点时,三角形APQ面积为0,此时面积最小再问:有没有具体过程啊再答:设BP=x则AP=(4^2+x^2)^0.5CP=4-x三角形ABP与三角形PCQ相似因此,CQ=CP*BP/AB=(4-x