已知如图射线ab cd,p为一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:19:18
已知如图射线ab cd,p为一动点
如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD交射线BD于F

(1)连AC、EC、PF,因为PE⊥PCPE=CP∴∠CEP=∠CAP=45°∴A、E、C、P四点共圆∴∠EAC=∠EPC=90°∴∠EAD=∠DAC=45°=∠ABD∴AE∥BF而EF∥CD∥AB∴

如图,已知正方形ABCD的边长为1,点P是射线AB上一动点(从点B出发沿BG方向运动)连接PD

存在.讲因为△BEF中的EF那条边也是□PDEF的其中一条边,那P点向G点移动,当P点完全与G点重合的时候,FE那条边已经变成了一条平行线,FE变成了平行线,那△BEF就会变成一个梯形(BEFG).当

初三数学难题 需详解已知:如图,正方形ABCD中,AC、BD为对角线,点E是射线BC上一动点,连结AE,点F在射线CD上

1.连FC,因为AD=CDDF=DF∠ADF=∠CDF∴△ADF≅△CDF∴AF=CF∠DAF=∠DCF∴∠BAF=∠BCF(等角的余角相等)又因为∠ABG=∠AFG=RT∠∴∠ABG+∠

如图,P为正方形ABCD边BC上一动点,连接AP,\x05\x05\x05\x05\x05\x05\x05

要加分啊,是大连中山区的期末考试试题吗?

如图,P是边长为1的正方形ABCD 对角线AC上一动点(P与A、C不重 合),点E在射线BC上,且P

正方形对角线与边夹角45°,等腰三角形PEB的高为1-x/根号2,底边长为2乘以根号2乘以X面积为相乘除2.X大于0小于根号2X=根号2/2时最大

已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),

本题的解随B的点的位置在变化.所以必须假定B点的坐标为(0,1).1.求AB的长:AB=OA-OB=3-1=22.求BP1的斜率:因为BP1的解析式为y=2x+1,所以BP1的斜率为2,表明AB=2A

如图,在平面直角坐标系中,已知A(-2,0),C(0,2),x轴上有一动点P从A出发沿射线AO方向运动,y轴上有一动点Q

AC=2√2PQ=2AC=2×2√2=4√2设运动时间为T那么﹙2-T﹚²+﹙2+T﹚²=﹙4√2﹚²=32解得T=2√3秒所以运动时间2√3秒时,PQ=2AC再问:谢谢

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

】如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),

(1)相似三角形的判定条件是:三个角相等.△APE的∠PAE=△ADQ的∠DAQ(就是同一个角),1个角相等了因为PE‖DQ,所以∠EPA=∠QDA,(两条平行线相交的同位角)2个角想等了因为PE‖D

如图,已知正方形ABCD的边长为1,E为CD边的中点,P为ABCD边上的一动点.动点P从A点出发,沿A---B---C-

1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1

如图,已知正方形ABCD的边长是1,E是CD边上的中点,P为BC边上的一动点

(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,

已知,平行四边形ABCD中,对角线AC垂直于AB,AB=15,AC=20,点P为射线BC上一动点,AP垂直PM(点M于点

∵AC⊥AB,AB=15,AC=20∴BC=√(400+225)=25,作AE⊥BC交BC于E,则AE=15*20/25=12,BE=15*15/25=9PE=x-BE=x-9AE^2+PE^2=AP

如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A满足______时,△AOP为钝角三

∵当∠A与∠O的和小于90°时,三角形为钝角三角形,∴0°<∠A<60°,∵当∠A大于90°时候此三角形为钝角三角形,∴此时90°<∠A<150°.故答案为:0°<∠A<60°或90°<∠A<150°

(2014•尤溪县质检)如图1,已知矩形ABCD,E为AD边上一动点,过A,B,E三点作⊙O,P为AB的中点,连接OP,

(1)如图1,∵矩形ABCD,∴∠A=90°,∴BE为直径,∴OE=OB,∵AP=BP,∴OP∥AE,AE=2PO,∴∠OPB=∠A=90°,即OP⊥AB.(2)此时直线CD与⊙O相切.理由:如图1,

如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:

(1)在△CPD和△BCP中,PC=PC,BC=CD,∠BCP=∠PCD,所以△CPD全等于△BCP(SAS),所以PD=BP,又因为PE=PB,所以PE=PD.所以∠PDC=∠PBC,又因为PE=P

如图,已知正方形ABCD的边长为2√3,点M是AD的中点,P是线段MD上的一动点(P不与M.D重合),以AB为直径做⊙O

⑴,AB=BC=CD=DA.AO=OE=OB.FB=FE.PA=PE⑵周长=CD+DP+PF+FC=CD+DP+PE+EF+FC=CD+DP+PA+BF+FC=CD+DA+BC=6√3

如图,已知正方形abcd的边长为4,P为BC上一动点,QP⊥AP叫DC于Q点.问:当点P在何位置三角形APQ的面积最小?

p位于c点时,三角形APQ面积为0,此时面积最小再问:有没有具体过程啊再答:设BP=x则AP=(4^2+x^2)^0.5CP=4-x三角形ABP与三角形PCQ相似因此,CQ=CP*BP/AB=(4-x