已知抛物线y2=2x和定点A(3,103

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:00:12
已知抛物线y2=2x和定点A(3,103
已知抛物线y2=x+1,定点A(3,1),B为抛物线上任意一点,点P在线段AB上,且有BP:PA=1:2,当点B在抛物线

设点B的坐标(X,Y),点P的坐标为(x,y),则x=X+12×31+12=2X+33,y=Y+12×11+12=2Y+13∴X=32(x−1),(1)Y=12(3y−1),(2)∵点B在抛物线上,∴

已知A.B是抛物线y2=4x上的两点,P(1,2).

我们之间拥有的这个惟一的世界里哈哈.我看见目光在男人们和女人们中间交换,嘴唇到躯体,而当我们分开,我想我被空中的一片高声恸哭

已知抛物线y2=2X的焦点为F,定点A(3,2)在抛物线内,求点P使|PA|+|PF|的最小,点P的坐标是?

/>我说你画图啊!画出抛物线的准线记为L由抛物线定义|PF|就等于点P到直线L的距离所以|PA|+|PF|就是PA加上P到L的距离由图易知PA加上P到L的距离最短时为PA平行于X轴时令y=2代入抛物线

已知定点A(0,t)(t≠0),点M是抛物线y2=x上一动点,A点关于M点的对称点是N.

答:1设点N的坐标为(x,y)M是AN的中点,所以坐标为(x/2,[t+y]/2)N在抛物线上,所以(t+y)^2/4=x/2,N点的轨迹方程为x=(t+y)^2/22联立两方程得两个纵坐标y1=(1

已知抛物线y2=4x,p是抛物线上一点,设F是焦点,一个定点是(6,3)求|PA|+|PB|的最小值和P点坐标 ,

你的题有问题,应为PF+PB的最小值(B为(6,3)),A为准线上的点.根据抛物线上的点到焦点的距离等于这个点到焦点的距离可得:要使距离相加最短则PA和PB在同一条直线上(PA=PF).所以最小值为7

已知抛物线y1=a(x-h)的平方+k与y2=(x-2)的平方-7的开口方向和大小都相同,最低点的

y₁=(x+1)-2由y₂向右平移三个单位,再向下平移5个单位

已知抛物线y2=2px(p>0)的焦点为F,A与B是抛物线上两个动点,(AB与x轴不垂直),线段AB的垂直平分线恒过定点

以Q点为圆心做一个半径为R的圆方程为:(x-6)^2+y^2=R^2当圆与抛物线相交时联立方程组得到(x-6)^2+2px=R^2他的两跟假设为x1,x2有x1+x2=12-2p因为|AF|+|BF|

点A(3,2)为定点,点F是抛物线y2=4x的焦点,点P在抛物线y2=4x上移动,若|PA|+|PF|取得最小值,则点P

由P向准线x=-12作垂线,垂足为M,由抛物线的定义,PF=PM,再由定点A向准线作垂线,垂足为N,那么点P在该抛物线上移动时,有|PA+|PF|=|PA|+|PM|≥|AN|,当且仅当A,P,N三点

已知直线y1=-3x+6和抛物线y2=-2x2+3x+2

(1)-3X+6=-2X²+3X+2-2X²+6X-4=0X²-3X+2=0(X-1)(X-2)=0X1=1,X2=2,当X=1或2时,Y1=Y2(2)由于二次函数开口向

已知定点A(3,4),点P为抛物线y2=4x上一动点,点P到直线x=-1的距离为d,则|PA|+d的最小值为______

∵抛物线y2=4x的准线方程为x=-1,焦点F坐标(1,0)因为点A(3,4)在抛物线外,根据抛物线的定义可得|PA|+d的最小值为|AF|=(3−1)2+(4−0)2=25故答案为:25

求解抛物线题目已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+P

(1)作AM垂直于准线于M,与抛物线交于点P,则AP+PF的绝对值(F为C的焦点)有最小值P(x,2)4x=4x=1P(1,2)最小值为:3+1=4(2)连结FB,与抛物线交于点Q,则QF-QB的绝对

(2010•浙江模拟)已知定点A(3,4),点P为抛物线y2=4x上一动点,点P到直线x=-1的距离为d,则|PA|+d

∵抛物线y2=4x的准线方程为x=-1,焦点F坐标(1,0)因为点A(3,4)在抛物线外,根据抛物线的定义可得|PA|+d的最小值为|AF|=(3−1)2+(4−0)2=25故答案为:25

已知抛物线C1:y1=a(x-1)2+k1(a≠0)交x轴于点(0,0)和点A1(b1,0),抛物线C2:y2=a(x-

(1)∵抛物线C1:y1=a(x-1)2+k1(a≠0)交x轴于点(0,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(2,0),∴b1=2.(2)由与(1)相同的方法可得b2=4,b3=8,

已知抛物线的方程y2=4x,过定点P(-2,1)且斜率为k的直线l与抛物线y2=4x相交于不同的两点.求斜率k的取值范围

直线l的方程为:y-1=k(x+2),化为y=kx+2k+1.联立y=kx+2k+1y2=4x,化为k2x2+(2k+4k2-4)x+(2k+1)2=0,∵直线l与抛物线y2=4x相交于不同的两点.∴

已知抛物线y2=2x和定点A(3,10/3),抛物线上有动点p,p到定点A的距离为d1

答:抛物线y^2=2x=2px,p=1焦点F(1/2,0),准线x=-1/2d1+d2=PA+PN=PA+PF>=AFAF^2=(3-1/2)^2+(10/3-0)^2=625/36AF=25/

圆锥曲线 计算题已知抛物线 y2=4x 焦点为F 过定点K(-1,0)的直线L与抛物线交于A B两点点A 关于x轴的对称

设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).⑴、证明:将x=my-1带入y²=4x并整理得y²-4my+4=0,从而y1+y2=4m

高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点

设直线PA的斜率为1/k1(这么设是为了计算方便)直线PB的斜率为1/k2根据题意k1k2=1/2A(x1,y1),B(x2,y2)那么PA:x-1=k1(y-2)与抛物线C:y^2=4x联立得到y^

已知a为实数,求证:抛物线y=x^2+(a+2)x-2a+1都经过一个定点且顶点都若在一条抛物线上

令x=2可以算得y=4+2a+4-2a+1=9所以函数恒过定点(2,9)设定点坐标为(s,t)把顶点横坐标x=-(a+2)/2代入有得到纵坐标y=(a+2)^/4-(a+2)^2/2-2a+1即s=-

已知圆C的方程为(x-3)2+y2=4,定点A(-3,0),则过定点A且和圆C外切的动圆圆P的轨迹方程是(  )

圆C的方程为(x-3)2+y2=4,圆心坐标(3,0),半径为r=2;设动圆圆P的圆心坐标(x,y),由题意,过定点A且和圆C外切的动圆圆P的点满足|PC|=|PA|+r,|PC|-|PA|=r,满足

已知点A(0,2)和抛物线C:y2=6x,求过A且与抛物线C相切的直线方程

1.抛物线以原点为顶点,而A在y轴上,所以y轴是它的一条切线,即x=02.当切线的斜率存在时,设方程为y=kx+2,把x=y²/6代入得y=ky²/6+2,即ky²-6y