已知数列{an}的前n项和sn=-2分之3n的平方 2分之205n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:03:19
已知数列{an}的前n项和sn=-2分之3n的平方 2分之205n
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n属于正整数

a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5

已知数列an=10-n,求数列{|an|}的前n项和Sn

第一题,n=10时,Sn=-(a1+a2+a3+……)+2(a1+a2+……+a9)=-(9+10-n)n/2+90=(n^2-19n)/2+90.第二题实在是看不清楚你是怎么样写的题目第三题:1&#

已知数列{an}的前n项和为Sn,Sn=(an-1)/3 (n∈N)

n=1,S1=a1=(a1-1)/3,a1=-1/2;n=2,S2=a1+a2=(a2-1)/3,a2=+1/4;an=Sn-Sn-1=(an-1)/3-(an-1-1)/3=an/3-an-1/32

已知数列an=n²+n,求an的前n项和sn.

an看做两个数列,其中n^2求和根据平方数列求和公式为:n(n+1)(2n+1)/6n求和根据等差数列求和公式为:(1+n)*n/2两者相加即为答案

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a

已知数列{An}的前n项和为Sn,且Sn=n²+n(n∈N*)

1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-

已知数列{An}的前N项和Sn=12n-N^2求数列{|An|}的前n项和Tn 并求Sn的最大值

Sn=12n-n^2Snmax=36Sn=12n-n^2Sn-1=12(n-1)-(n-1)^2两式相减an=12-2n+1=-2n+13数列{|An|}的前n项和Tn当n6时Tn=36+1+3+5+

已知数列an的前n项和Sn=3+2^n,求an

Sn=3+2^nSn-1=3+2^n-1an=sn-sn-1=3+2^n-3-2^(n-1)=2^n-2^(n-1)=2*2^(n-1)-2^(n-1)=2^(n-1)

已知数列An的前n项和Sn=32n-n*n+1

(1)令n=1a1=S1=32-1+1=32Sn=32n-n²+1Sn-1=32(n-1)-(n-1)²+1an=Sn-Sn-1=32n-n²+1-32(n-1)+(n-

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列

为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S

已知数列{an}的前n项和为Sn,Sn=13(an−1)(n∈N*).

(Ⅰ)由S1=13(a1−1),得a1=13(a1−1)∴a1=−12又S2=13(a2−1),即a1+a2=13(a2−1),得a2=14.(Ⅱ)当n>1时,an=Sn−Sn−1=13(an−1)−

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{

数学试题:已知数列{an}前n项和为Sn

S1=a1=1-1*a12a1=1a1=1/2S2=1-2a2=a1+a2=1/2+a23a2=1/2a2=1/6Sn=1-nanSn-1=1-(n-1)a(n-1)相减an=Sn-Sn-1=1-na

已知数列AN的前N项和SN,SN=2N^2+3n+2,求an

A(n+1)=S(n+1)-Sn=2(n+1)^2+3(n+1)+2-2n^2-3n-2=2n^2+4n+2+3n+3-2n^2-3n=4n+5An=5+4(n-1)

已知数列an=n²,求数列的前n项和Sn.

an=n^2=n(n+1)-n=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)]-(1/2)[n(n+1)-(n-1)n]Sn=a1+a2+...+an=(1/3)n(n+1)(n+2)-

已知数列{an}的前n项和为Sn,且Sn=23an+1(n∈N*);

(Ⅰ)a1=3,当n≥2时,Sn−1=23an−1+1,∴n≥2时,an=Sn−Sn−1=23an−23an−1,∴n≥2时,anan−1=−2∴数列an是首项为a1=3,公比为q=-2的等比数列,∴

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

已知数列{an}的前n项和sn=n^2-8n,求数列{|an|}的通向公式

由题意:a1=1^2-8×1=-7由条件sn=n^2-8n…①s(n-1)=(n-1)^2-8(n-1)…②①-②得:sn-s(n-1)=2n-9由an=sn-s(n-1)故an=2n-9,此式适用于

已知Sn是数列{an}的前n项和,an>0,Sn=(an²+an)/2

1.n=1时,S1=a1=(a1²+a1)/2,整理,得a1²-a1=0a1(a1-1)=0a1=0(与已知不符,舍去)或a1=1S1=a1=1n≥2时,Sn=(an²+

一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An

Sn-S(n-1)=2An-2A(n-1)=An所以An=2A(n-1)An/2A(n-1)=2即An为等比为2的等比数列令n=1,S1=3+2A1=A1A1=-3所以An=-3*[2^(n-1)]