已知数列前n项和Sn=n平分 n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:17:16
已知数列前n项和Sn=n平分 n
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n属于正整数

a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5

已知数列an=10-n,求数列{|an|}的前n项和Sn

第一题,n=10时,Sn=-(a1+a2+a3+……)+2(a1+a2+……+a9)=-(9+10-n)n/2+90=(n^2-19n)/2+90.第二题实在是看不清楚你是怎么样写的题目第三题:1&#

已知数列{an}的前n项和为Sn,Sn=(an-1)/3 (n∈N)

n=1,S1=a1=(a1-1)/3,a1=-1/2;n=2,S2=a1+a2=(a2-1)/3,a2=+1/4;an=Sn-Sn-1=(an-1)/3-(an-1-1)/3=an/3-an-1/32

已知数列an=n²+n,求an的前n项和sn.

an看做两个数列,其中n^2求和根据平方数列求和公式为:n(n+1)(2n+1)/6n求和根据等差数列求和公式为:(1+n)*n/2两者相加即为答案

已知数列{an}的前n项和Sn=n (2n-1),(n∈N*)

(1)当n≥2时,an=Sn-Sn-1=n(2n-1)-(n-1)(2n-3)=4n-3,当n=1时,a1=S1=1,适合.∴an=4n-3,∵an-an-1=4(n≥2),∴an为等差数列.(2)由

已知数列an的前n项和Sn,求数列的通项公式.(1)Sn=3n²-n (2)Sn=2n+1

an=sn-Sn-1(1)Sn=3n^2-nSn-1=3(n-1)^2-(n-1)Sn-Sn-1=3(2n-1)-1=6n-4

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a

已知数列{an}的前n项和为Sn=3n^2-5n/2(n属于N*)

(1)当n=1时a(1)=S(1)=3-5/2=1/2当n≥2时a(n)=S(n)-S(n-1)=3n^2-5n/2-3(n-1)^2+5(n-1)/2=6n-11/2其中n=1是也符合上式,所以a(

已知数列{An}的前n项和为Sn,且Sn=n²+n(n∈N*)

1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-

已知数列{an}的前n项和为Sn=4n^2-2n.n属于N+

1、当n=1时,a1=s1=2当n≥2时,an=Sn-S(n-1)=4n²-2n-[4(n-1)²-2(n-1)]=8n-6当n=1时,满足an通项公式∴an=8n-6n属于N+2

已知数列{An}的前N项和Sn=12n-N^2求数列{|An|}的前n项和Tn 并求Sn的最大值

Sn=12n-n^2Snmax=36Sn=12n-n^2Sn-1=12(n-1)-(n-1)^2两式相减an=12-2n+1=-2n+13数列{|An|}的前n项和Tn当n6时Tn=36+1+3+5+

已知数列An的前n项和Sn=32n-n*n+1

(1)令n=1a1=S1=32-1+1=32Sn=32n-n²+1Sn-1=32(n-1)-(n-1)²+1an=Sn-Sn-1=32n-n²+1-32(n-1)+(n-

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列

为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{

已知Un=(n+1)a^n,求数列Un的前n项和Sn

Sn=2a+3a^2+4a^3+...(n+1)a^naSn=2a^2+3a^3+.+na^n+(n+1)a^(n+1)(1-a)Sn=2a+a^2+a^3+...a^n-(n+1)a^(n+1)(1

已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn

【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……

已知数列Cn=(4n-2)/3^n,求前n项和Sn

这个用错位相消法(这类等差乘以等比的都是这样做)Sn=C1+C2+……+Cn(三分之一)XSn=(三分之一)XC1+……+nXCn(千万记得错一位)两式相减得(三分之二)XSn=…………(自己算吧记得

已知数列{bn}=n(n+1),求数列{bn的前n项和Sn

n=n(n+1)=n^2+nSn=b1+b2+...+bn=(1^2+1)+(2^2+2)+...+(n^2+n)=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)

已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn

Sn=10n-n²,a1=S1=9,n≥2时,an=Sn-S(n-1)=11-2n∴an=11-2n(n≥1)该数列前5项为正,从第6起为负.①1≤n≤5时,Bn=Sn=10n-n²