已知方程x平方 (2k 1) k-1=0的两根x1,x2满足
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:35:32
k(x²-2x+1)-2x²+x=0(k-2)x²-(2k-1)x+k=0k=2时,方程变为-3x+2=03x=2x=2/3,有解,k=2满足题意.k≠2时,方程为一元二
证:△=(2k+3)²-4×1×(k²+3k+2)=4k²+12k+9-4k²-12k-8=1>0所以无论K取何值,方程都有两个不相等实根.
1.这是一元二次方程根的分布问题方法:一看判别式,二看对称轴,三看区间端点函数值的正负判别式(2k-1)^2-4k^2>0对称轴-(2k-1)/2>1f(1)>0∴k<-22.按要求把非p和非q求出来
表示双曲线,则:(2-k)*(k-1)2或k
(2k-4)x的平方+(2k-1)x+3k-1=0是关于x的一元一次方程∴2k-4=0k=23x+6-1=0x=-5/3
原方程有X和Y两个未知数,当其中一个的所有项系数均为0,而另一个不为0时,方程为一元方程,如果二次项系数为0时,即为一次方程.由此:1,当X的二次项系数(k^2-4)=0,且X的一次项系数(k-2)=
(1)当得打>0时,即(4k+1)的平方-4乘以2乘以(2k平方-1)>0解出k=就可以了(2)当得打=0时,即(4k+1)的平方-4乘以2乘以(2k平方-1)=0解出k=就可以了(3)当得打<0时即
x^2-(k+2)x+2k=0△=(k+2)^2-8k=k^2+4k+4-8k=k^2-4k+4=(k-2)^2≥0所以无论k取任何实数值,方程总有实数根另两边长恰是这个方程的两个根则x1+x2=k+
把x=0代入:(k-2)^2=0k=2
dailta>=04(k+1)^2-4(k^2-1)>=08k+4+4>=0k>=-1
根据韦达定理,X1+X2=-4/2=-2因为有一根为1X1=1,X2=-3X1X2=K/2=-3K=-6
1.Δ=(-(k+2))²-4*2k=k²+4k+4-8k=(k-2)²>=0恒成立,所以方程总有实数根.2.x=(k+2±(k-2))/2x1=k,x2=2等腰三角形:
两根互为相反数,则X1+X2=0即-b/a=0,k²-4=0,k=±2当k=2时,k-2=0不符合要求因此k=-2再问:嗯谢谢可是为什么带进去算不出呢再答:题目有问题本题△<0再问:带进后-
由韦达定理,有:AB+AC=2k-1、AB×AC=k.显然,AB、AC不等,否则与题设中(1)矛盾.当AB、AC中有一者为5时,此时△ABC就是等腰三角形,不失一般性,令AC=5,则:AB+5=2k-
(1)因为△=(4k+1)^2-4(2k-1)=16k^2+5>0,故方程一定有2个不相同的实数根(2)x1+x2=-(4k+1);x1*x2=2k-1(X1-2)(X2-2)=x1*x2-2(x1+
类似a*X^2+b*X+c=0这样的问题,因为常数项系数不确定,首先需要考虑b^2-4*a*c与0的大小关系.根据不同的大小关系,有不同的解的形式,套公式就可以了.再问:这个我知道!主要是第(2)题怎
设方程的两个根分别为p、q,则p*q=k²-4k+1;因为(p,q)在反比例函数的图像上,所以p*q=M;结合上式得:M=k²-4k+1=(k-2)²-3≥-3;M的最小
1、经求解知:4(k^2+2x+1)-4(k^2-1)=8k+8>0,得到k>-1;2、当[-(2k-2)+(8k+8)^0.5]=[-(2k-2)-(8k+8)^0.5]得到:k+1=-(k+1),
已知关于x的方程(2-3k)x的平方—2倍根号k×x-1=0有实数根,则k的值为∵有实数根,∴△=(-2√k)²-4×(-1)×(2-3k)≥04k+8-3k≥0∴k≥-8再问:不对..答案