已知正三棱柱ABC-A1B1C1地面半径为2√3,高为3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:56:26
(1)设内接正三棱柱的高为x,底面的边长为a,由直角三角形相似得15−x15=23×32a23×32×12,∴a=60−4x5,内接正三棱柱的侧面积为:120=3a•x=360−4x5 x,
如图取AB的中点D,设侧棱长为a,因为AD=12,A1A=1,A1B1=2,∴Rt△A1AD≌Rt△B1A1A,∠AB1A1=∠AA1D,则A1D⊥AB1,又∵CD⊥AB,A1D∩CD=D∴AB1⊥面
改用向量的方法,ef与A1B1没有直接联系必须借助其他的东西来证明
取AC的中点E,连接BE,C1E,∵正三棱柱ABC-A1B1C1中,∴BE⊥面ACC1A1,∴∠BC1E就是BC1与侧面ACC1A1所成的角,BC1=3,BE=32,∴sinθ=12,θ=30°.故答
设截面为△A′′BC,这时,△ABC的边长为4/3,高为2√3/3;由已知条件可得,A′′到A点的距离为2/3,这时截面△A′′BC的高为√((2/3)^2+(2√3/3)^2)=√2;△A′′BC的
答:正三棱柱ABC-A1B1C1上下底面是正三角形,侧棱垂直底面设截面交AA1于点D,取BC中点O,连接DO、AO正△ABC中:AB=BC=AC=2则:AO=√3因为:AA1⊥底面ABC所以:AA1⊥
(1)上下三角形的面积+三个长方形面积(2)添加辅助线:AC中点D与M点相连然后:显然BD是正三角形ABC的中垂线,MD是等腰三角形AMC的中垂线,这时观察Rt三角形MDB,发现二面角M-AB-C就是
(1)因为侧面A1ACC1垂直底面ABC,BC属于底面ABC,BC垂直AC,侧面A1ACC1交底面ABC=AC,所以BC垂直侧面A1ACC1,而直线AM在侧面A1ACC1上,所以直线AM垂直直线BC.
再问:我觉得应该是这样啊,但是长宁区2014一模卷的答案居然是具体数字!我觉得这非常的奇妙。。。再答:首先,你检查一下你上传题目时有没有漏掉一些内容,如果确认没有的话,就是它的题目有问题,题目只给出线
设棱长为6a,高为h由图知:CO=R=1又∵ CO2=2√3a ∴ (OO2)²=(CO)²-(CO2)² =1-12a²
我们把两个相同的正三棱柱合在一起,组成一个平行六面体ABDC-A1B1D1C1.则上下两个底面为菱形.连结C1D,则A1B‖C1D,所以,∠AC1D即为异面直线A1B与AC1所成的角.连结两底面的对角
也是垂直!再问:能不能把过程写出来再答:我跟你说下思路。做出两个中位线一个平行于BB1、一个平行于AC1,可以根据已知的那个垂直条件得出高为底面边长的√2/2倍,所以A1B与B1C1中点所成三角形为以
你的图呢?没图怎么做?
因为(1)中说EF=C1E,又因为C1E=CF,所以EF=CF再问:C1E=CF???why再答:BF=EA1,BC=A1C1,根据勾股定理,CF=C1E
1、(1)连结矩形ABB1A1对角线AB1和A1B交于E,连结DE,平面ADB1∩平面BA1C1=DE,对角线相互平分,D是A1C1中点,E是AB1中点,DE是△A1C1B的中位线,DE‖BC1,DE
正三棱柱ABC-A1B1C1的一个侧面AA1B1B,因为三个侧面均相等,沿着三棱柱的侧面绕行两周可以看成六个侧面并排成一平面,对角线的长度就是最短路线=根号[(6*2)²+5²]=
是的,直三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直与两底面的棱柱.正三棱柱完全满足,而且它还特殊在两底面为全等的正三角形,三个侧面为全等的矩形.
(1)连接AC1交A1M于N点∵角ACB=90度,角BAC=30度,BC=1AA1=√6M是CC1的中点∴CM=√6/2AC=√3=A1C1CC1=AA1=√6∴cotCAC1=cotC1MA1=√2
(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=
国为是正三棱柱,AB1垂直于BC1所以BC1垂直于CA1,CA1垂直于AB1(对应全等)所以AB1垂直于CA1