幂级数(-1)^n在收敛域上的和函数是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:10:52
因为在收敛域上,这些冥级数的和会表示成一个初等函数(也可能是非初等函数).比如e^x=1+x/1!+x^2/2!+x^3/3!+...+x^n/n!+.再问:谢谢!但是“幂级数的和函数在其收敛域上连续
把求和项里的x提出来一个s(x)/x=∑(n=1,∞)nx^(n-1)两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1,(|x|
这种问题现在没人手算了,都是计算机一步出结果.手算的话方法如下.第一问考虑下图中的F(x),待求的式子即是F'(x).第二问利用第一问的结论,答案是3;见下图.
本科水平,希望采纳
幂级数的和函数在收敛域内满足可积性和可微性,观察可知,求和符号内的函数为x^n的导数,那么幂级数就可以写成x^n的导数,x^n为等比级数,在收敛域内和函数收敛于x/(1-x),再对其求导即可得到原级数
易知收敛域为(-1,1),因为nx^(n-1)=(x^n)的导数,所以∑nx^(n-1)=(∑x^n)的导数,求得和函数为1/(1-x)^2.再问:神人也!哈,请在详细点可否,小弟我可没那么聪明哦再答
本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造
求积求导法,利用已知的求和公式,如图.经济数学团队帮你解答.请及时评价.
用柯西判别法可以判断收敛半径为1,另外在1处显然发散,在-1处为莱布尼茨型级数显然收敛,所以收敛域为[-1,1),令S=∑(∞,n=1)1/nx∧n,则S′=∑(∞,n=1)x∧(n-1)=1/(1-
后项比前项的绝对值的极限=|x-1|/2 收敛半径R=2x=3级数发散,x=-1级数收敛 收敛域[-1,3)
求幂级数Σ[(x-1)^n]/(n*2^n)的收敛域. 利用比值判别法,当 lim(n→∞)|u[n+1](x)/u[n](x)| =lim(n→∞)|{[(x-1)^(n+1)]/[(n+1
令原式=f(x)=∑nx^n积分得:F(x)=∑x^(n+1)=x^2/(1-x),当|x|
另an=nx^(n-1)由a(n+1)/an=(n/(n-1))*x
f=∑(∞,n=1)x^n/nf‘=∑(∞,n=1)x^(n-1)=1/(1-x)|x|
已经做过:lim(1/[(n+1)3^(n+1)]/(1/n·3^n)=1/3,故收敛半径为3当x=3时,为调和级数,发散当x=-3时.为收敛的交错级数收敛域为[-3,3)
∑nx^n=x∑nx^(n-1)=x(∑x^n)'=x(x/(1-x))'=x/(1-x)^2
|lnx|
收敛半径R=3-(-1)=4再问:解释一下可以吗?。。再答:条件收敛点只能在收敛域与发散域的分界点上
后项比前项的绝对值的极限=|x|收敛域:|x|再问:麻烦再问一下,答案第三行级数∑(n=1,∞)x^(n+1)为什么等于x^2/(1-x)????再答:首项x^2,公比x的等比级数求和