A2-2A=0求证可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:36:50
A2-2A=0求证可逆
设A是n阶方阵,且A2=A,证明A+E可逆

由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆

设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设方阵A满足A2-2A-E=0,证明A-2E可逆,并求(A-2E)-1次方

解:因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

a,b,c>0 ,a2+b2+c2+2abc=1 求证:a+b+c

令a+b+c=k,则a^2+b^2+c^2+2abc=1等价于(a+b+c)^2-2(ab+bc+ac)+2abc=1两边同时加上2(a+b+c)-2得(a+b+c)^2-2(ab+bc+ac)+2a

设A 为n 阶方阵,A不等于0 ,若A2次方-3A=0 .证明A-3E 不可逆.

由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!

对任意实数a,b,求证:a2+b2-2a-2b+2>=0

a2+b2-2a-2b+2=a2-2a+1+b2-2b+1=(a-1)^2+(b-1)^2>=0

A2+AB+B2=0,B为可逆矩阵,证明A和A+B可逆,并求其逆

A2+AB+B2=0->A(A+B)=-B2两边乘以B-2->B-2A(A+B)=-E->-B-2A(A+B)=E所以(A+B)可逆(A+B)-1=-B-2A同理,A(A+B)B-2=-E所以A可逆,

已知n阶方阵A满足A2+2A-3E=0,证明A可逆,并写出A的逆距阵的表达式

做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3

线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵

原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A

若方阵A满足A2+A-7E=0,求证A+3E可逆,并求其逆

A2+A-7E=0,(A+3E)(A-2E)=E所以由书上推论,得A+3E可逆,且A+3E的逆矩阵(A+3E)^(-1)=A-2E.

设n阶方阵A,满足A2-3A-3E=0,证明A-E可逆,并求(A-E)-1

证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢

已知a>b>0 ,且ab=1,求证 a2+b2/a-b >=2根号2

(a^2+b^2)/(a-b)=(a^2+b^2-2ab+2ab)/(a-b)=[(a-b)^2+2]/(a-b)=(a-b)+2/(a-b)>=2√[(a-b)*2/(a-b)]=2√2所以(a^2

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设方阵A满足A2-A-2I=0,证明A和A+2I都可逆,并求A-1和(A+2I)-1.

因为A^2-A-21=0A(A-1)=21|A|*|A-1|=21|A|不等于0所以,A可逆而A^2=A+21|A+21|=|A|2不等于0,所以,A+21可逆A(A-1)=21A^-1=(A-1)/

27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.

要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2

设n阶矩阵A满足A2+3A-2E=0.证明A可逆,并且求A的逆矩阵.

A²+3A-2E=0,所以A²+3A=2E,即A(A+3E)=2E,于是A(A/2+3E/2)=E,显然A为n阶方阵,而A和A/2+3E/2是同阶方阵,而两者相乘为E,所以由逆矩阵

矩阵与变换1.设λ是矩阵A的一个特征值,求证:λ2是A2的一个特征值若A2=A,求证:A的特征值是0或1

λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值

刘老师您好!A为n阶方阵,且A^2+3A=0,则 A.A+I可逆 B.A-I可逆 C.A-3I可逆 D.3A可逆

由A^2+3A=0得A^2+3A+2I=2I,分解得(A+I)(A+2I)=2I,由|A+I|*|A+2I|=2^n≠0得|A+I|≠0,所以A+I可逆.选A.再问:书上说A若B=I则A与B均可逆但(

设n阶方阵A满足A²-A-3I=0,求证A-2I和A+1都可逆

因为A^2-A-3I=0所以A^2-A-2I=I所以(A-2I)*(A+I)=(A+I)*(A-2I)=I所以|A-2I|*|A+I|=|I|=1所以|A-2I|≠0且|A+I|≠0所以A-2I和A+

设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆

由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=