a=2bcosc判断三角形的形状

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:22:33
a=2bcosc判断三角形的形状
在三角形ABC中,证明:a=bcosC+ccosB

过A向BC作垂线,在每个直角三角形里把分出的线段表示出来,一条是bCOSC,一条是cCOSB,加起来就是a了~

在三角形ABC中,证明a=bCosC+cCOSb.

过A做AD垂直于BC,垂足为D(其实就是做高)可以证明BD=c*cosB,CD=b*cosC而a=BD+DC得证

三角形ABC中,a=2bcosc,判断其形状

a=2bcosc根据余弦定理有a=2b*(a^2+b^2-c^2)/2ab=a^2+b^2-c^2/a则有a^2=a^2+b^2-c^2则有b=c此三角形的形状是等腰三角形

在三角形ABC中,a,b,c分别表示角A,B,C对应的三边,(1)若a sinA=bcosC+c cosB,试判断三角形

(1)把余弦定理的变形式cosB=(a²+c²-b²)/2accosC=(a²+b²-c²)/2ab代入asinA=bcosC+ccosB得

一道正余弦定理的题在三角形ABC中,若a=2bcosC,试判断三角形形状

cosC=(a^2+b^2-c^2)/2ab所以a=2b*(a^2+b^2-c^2)/2ab=(a^2+b^2-c^2)/aa^2=a^2+b^2-c^2b^2=c^2显然b>0,c>0所以b=c所以

在三角形ABC中,若a=2bcosC,判断三角形的形状

a=2bcosc根据余弦定理有a=2b*(a^2+b^2-c^2)/2ab=a^2+b^2-c^2/a则有a^2=a^2+b^2-c^2则有b=c此三角形的形状是等腰三角形

1、已知三角形ABC中,bcosC=c cosB,试判断三角形ABC的形状____ 2、若不等式ax^2+bx-2>0的

1、等腰三角形b/c=sinB/sinC=cosB/cosC推出tanB=tanC.三角形中B、C皆小于180°,所以B=C2、说明上述不等式变为等式方程根为-1和-1/4,代入就拉倒.应该是a=-8

在△ABC中,已知acosA+bcosB=ccosC,a=2bcosC,试判断△ABC的形状.

∵a=2bcosC,由正弦定理可得,2sinBcosC=sinA=sin(B+C)=sinBcosC+cosBsinC,∴sinBcosC-cosBsinC=0,即sin(B-C)=0,∴B-C=0,

在三角形ABC中,角A,角B角C所对的边分别为a,b,c已知a=2bcosC个三角形一定是

由余弦定理可知c^2=a^2+b^2-2abcosC由已知可得a^2=2abcosC代入上式c^2=b^2因为c>0b>0所以b=c因此三角形ABC是等腰三角形

在三角形ABC中,已知三边a,b,c 成等比数列,且a=2bcosc,判断三角形的形状

题目a=2bcosc写错了吧,是a=2bcosC才对.因为a,b,c成等比数列,所以有b^2=ac,根据余弦定理cosC=(a^2+b^2-c^2)/(2ab),则a=2bcosC=a=2b(a^2+

已知bcosC=(2a-c)cosB,若b*b=ac,试确定三角形ABC的形状

cosC=(2a-c)cosB余弦定理得b*(a^2+b^2-c^2)/2ab=(2a-c)*(a^2+c^2-b^2)/2ac整理得a^3+ac^2-2a^c=0a≠0,所以a^2-2ac+c^2=

在三角形ABC中,已知acosA+bcosB=ccosC,a=2bcosC,试判断三角形的形状?

∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)∴0=sin2A+si

△ABC中,a=2bcosC,则△ABC的形状是______三角形.

将a=2bcosC,利用正弦定理化简得:sinA=2sinBcosC,∵sinA=sin(B+C)=sinBcosC+cosBsinC,∴sinBcosC+cosBsinC=2sinBcosC,即si

已知a,b,c分别为三角形ABC三个内角A,B,C的对边,2bcosC=2a-c.

⑴由正弦定理得:2sinBcosC=2sinA-sinC,在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC,∴2cosBsinC=sinC,∵C是三角形的内角,可得sinC

在三角形ABC中,(根号2a-c)cosB=bcosC,求角B

请问一下,你那个是根号2再乘以a还是2乘以a整体再根号啊如果是根号2再乘以a的话就是利用余弦定理代替式中的cosB和cosCcosC=(a^2+b^2-c^2)/(2·a·b)cosB=(a^2+c^

三角形ABC中2acosa=bcosc+ccosb 若a=2求b+c的取值范围

2acosa=bcosc+ccosb可由正弦定理得cosa=1/2,由余弦定理得bc=b方+c方-4,由重要不等式得bc小于等于4,再由重要不等式得b+c大于等于2倍根号下bc,所以b+c大于等于4<

高二正弦定理在三角形ABC中,已知a=bcosc,试判断三角形的形状,只能用正弦定理,应该怎么判断?

先用正弦定理整理sinA=sinBcosC,sinA=sin(B+C)=sinBcosC+cosBsinC所以sinBcosC=sinBcosC+cosBsinC所以cosBsinC=0而正弦值在三角

三角形中ABC中,bcosC=(2a-c)cosB

(2a-c)cosB=bcosC正弦定理得:(4RsinA-2RsinC)cosB=2RsinBcosC2sinAcosB=sinBcosC+sinCcosB2sinAcosB=sin(B+C)2si