ABC的外角平分线CP和内角平分线BP相交于点P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:04:15
根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B
(1)、据题意,在△ABC中∠ABC+∠ACB=180°-∠A=120°,在△DBC中∠D=180°-(∠DBC+∠DCB)=180°-(1/2)(∠ABC=∠ACB)=180°-120°/2=120
(1)已知∠A等于30°,∴∠ABC+∠ACB=150°∵DC和DB平分∠ABC和∠ACB∴∠DBC+∠DCB=75°,∴∠D105°∵∠ABC+∠ACB,∴∠FCB+∠EBC=360°-150°=2
证明:∵∠DBC=180-∠ABC,BP平分∠DBC∴∠PBC=∠DBC/2=(180-∠ABC)/2=90-∠ABC/2∵∠ECB=180-∠ACB,CP平分∠ECB∴∠PCB=∠ECB/2=(18
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
过P作PE,PF,PG垂直BA,AC,CD角平分线得PE=PGPF=PG即PE=PFPA=PA所以PEA全等PFAEAP=FAPBPC=PCD-PBC=1/2ACD-1/2ABC=1/2(ACD-AB
过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE
(1)∠A=30°则:∠ABC+∠ACB=150°因为:BD CD 是内角平分线所以:∠1+∠2=75°所以:∠BDC=180°-75°=105°同理:∠EBC+∠FCB=(180°-∠ABC)+(1
∵△ABC的内角平分线BP与外角平分线CP交于P,∴∠PBC=12∠ABC,∠PCD=12∠ACD,∵∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴12(∠A+∠ABC)=∠PBC+∠P=12
延长BA,做PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠B
延长BA,做PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠B
∠PCD=∠PBC+∠BPC=∠PBC+40°;(1)PB平分∠ABC,得∠PBC=∠ABC/2;PC平分∠ACD,得∠PCD=∠ACD/2;代入(1)得∠ACD-∠ABC=80°;在△ABC中,∠B
1.如图,在△BCP中,有(∠BAC+∠ABC)/2+∠BCA+∠ABC/2=180°-25°=155°即∠BAC/2+∠BCA+∠ABC=180°-∠BAC/2=155°∴∠BAC/2=25°,即∠
(1)已知BD,CD是内角平分线,∵∠A=30°,∴∠ABC+∠ACB=180°-∠A=180°-30°=150°,∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12×150°=75°,∴∠BDC
∠BPC=1/2∠A列式:∠BPC=1/2C外角-1/2∠ABC=1/2(180-∠ACB-∠ABC)=1/2∠A
∠PBC=40不会有结果,应为∠BPC=40则∠CAB=∠ACD-∠ABC=2(∠PCD-∠PBD)=2∠BPC=80向三角形三边作垂线分别相交于E,F,G.则有PE=PF=PG故PA是∠BAC外角的
(1)分别过P点别作BC延长线、BE、AC的的垂线,垂足分别为F,H、G因为CP为角ACF的平分线,所以PF=PG因为BP为角EBF的角平分线,所以PF=PH所以PH=PG,AP平分角CAE(2)因为
2∠BPC=∠BAC证:∠ACD=∠BAC+ABC=∠BAC+2∠PBC ∠PCD=∠PBC+∠BPC∵∠acd的平分线cp与内角∠abc的平分线bp交于点p∴∠PCD=∠ACP
延长BA,作PN⊥BD于点N,PF⊥BA于点F,PM⊥AC于点M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴
(1)55用特殊情况法.假设这是一个等边三角形,那么BP垂直于AC,角APB=角CPB,CAP+BPC=90(2)120为等边三角行得中心,所以OD:AD=1:3又OD=4,所以AD=12