ab是圆o的直径,ad是炫,作dc与ab的延长线交于点c,使角bdc等于角a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:46:18
ab是圆o的直径,ad是炫,作dc与ab的延长线交于点c,使角bdc等于角a
AB是圆O的直径,PB切圆O于点B,且PB=AB,过B作PO的垂线,分别交PO,PA于点C,D,若AD=a,求PD

过O点作PA的平行线,交BD于E,很容易得到OE=AD/2=a/2.假设圆的半径为R,那么PO=√5R,BC=PB.OB/PO=2R/√5所以OC=√(OB^2-BC^2)=R/√5,PC=PO-OC

1的一道习题AB是圆O的直径,PB是圆O的切线,且PB=AB,过点B作PO的垂线,分别交PO、PA于点C、D,若AD=2

延长BD交圆于E,连接AE,因为pb是切线所以pb垂直ab,又因为它们长度相等,所以这是一个等腰直角三角形,角apb=45度.因为ab是直径,所以角e是直角,又因为bc垂直po,po平行于ae,所以三

如图,AB是圆O的直径,PB是圆O的切线,且PB=AB,过点B作PO的垂线,分别交PO,PA于点C,D, 若AD=4,则

PD=8AD/PD=S△ACB/S△CPB=2*S△COB/S△CPB(O为AB的中点)=2*OC/CP这里直角三角形PBO两条直角边的比是1:2,所以上面这个比求出来是1:4所以AD/PD=1/2,

如图,AB是圆O的直径,PB是圆O的切线,且PB=AB,过点B作PO的垂线,分别交PO,PA于点C,D.若AD=4,则P

过D作DE⊥AB垂足EDE=AE=2√2BE=4√2AB=6√2AP=12PD=PA-AD=8再问:BE=4√2是怎么来的?再答:∵PB=AB∴∠A=45°再问:我也知道啊,求不出来啊...BD不知道

如图 AB是圆O的直径 C是弧AD的中点…

证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠

AB是圆O的直径,AC,AD是圆O的两条弦,已知AB=16,AC=8,AD=8,求∠DAC的角度.

∵AB是直径,∴∠ACB=∠ADB=90°,cos∠CAB=AC/AB=1/2,∴∠CAB=60°,∵AC=AD=8,∴C、D分别在AB的异侧,∴∠CAD=120°.

如图,已知,AB是圆O的直径,BC是圆O的切线,OC平行AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P

EP/BC=AE/ABED/BC=AE/OB显而易见的可以看出ED=2EP哪里看不懂,可以继续问.

ab是圆o的直径,AC,AD是弦,且AB平分角CAD.求证:AC=AD

∵AB是圆O的直径又∵AC、AD是圆O的弦且直径AB平分AC、AD所成的夹角∠CAD(已知条件)连接CO、DO组成两三角形ACO、三角形ADO(只要证明两三三角形全等即可证明:AC=AD)证明:∵CO

AB是圆O的直径,C是圆O上的一点,连结AC,过C作直线CD垂直于AB,垂足为D(AD小于DB),点E是线段DB上任意一

证明:如图1,连接BC、BF因为AB是直径所以∠ACB=∠AFB=90°因为CD⊥AB所以∠ADC=∠ADG=90°所以∠ACB=∠ADC,∠AFB=∠ADG又因为∠CAD=∠BAC,∠DAG=∠FB

如图,AB是圆O的直径,弦AD平分∠BAC,过点D作AC的垂线DE,与AC相交于C,求证,DC是圆O的切线

连接OD∵OA=OB=OD∴∠ODA=∠OAD∵AD平分∠BAC∴∠BAD=∠CAD即∠OAD=∠EAD=∠ODA∵DE⊥AC∴∠EAD+∠EDA=90°∴∠ODA+∠EDA=90°即∠EDO=90°

如图已知AB是圆O的直径,C为圆O上一点,过点C作圆O的切线CD,若AC平分角DAB,求证:AD垂直DC

证明:在圆o中连接CO∵AO=CO∴∠OAC=∠OCA∵AC平分∠DAC∴∠DAC=∠OAC∴∠OCA=∠DAC∴AD∥OC∵CD为圆O的切线∴OC⊥DC∴AD⊥DC

AB是圆O的直径.BC垂直于AB于B.连OC.过A作AD平行OC交圆o 于D.求证CD是圆o 的切线

证明:AO=DO,∠ADO=∠DAOAD‖OC,∠ADO=∠DOC,∠DAO=∠COB,∴∠DOC=∠COBDO=OB,OC=OC△DOC≌△BOC∠CDO=∠CBO=90CD是圆O切线

在三角形ABC中,AD垂直BC于D,E,F分别是AB,AC的中点,且EF等于AD,以EF为直径作圆O.求证:BC为圆O的

证明连接EF,交AD于G∵E,F分别是AB,AC的中点∴EF∥BC,GD=AD/2∵EF=AD∴GD=EF/2∵AD⊥BC∴AD⊥EF∴EF到BC的距离为EF/2∵直径为EF∴BC为圆O的切线再问:∵

AB是圆O的直径,BC垂直AB于B,连OC,过A作AD平行OC,过A做AD平行OC交圆O于D,求证CD是圆O 的切线

连接OD,则只需证OD⊥CD即可因为AD//OC,所以∠DAO=∠COB,∠ADO=∠COD又因为OA=OD,∠DAO=∠ADO,则∠COB=∠COD又因为OD=OB,OC为公共边,则△OCD与△OB

如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长为直径作圆,交BC于E,过E作EH⊥AB于H.EH

(1)证明:∵四边形ABCD是等腰梯形,且AD∥BC,∴AB=CD,∠B=∠C;又∵CD是直径,点O是腰CD的中点,∴点O是圆心,∴OE=OC,∴∠OEC=∠C(等边对等角),∴∠OEC=∠B(等量代

如图,AB是圆O的直径,AF是圆O的切线,CD是垂直于AB的弦,垂足为E,过点C作AD的平行线与AF相交

我是最快的因为∠BCD=∠BAD,∠AED=∠CEB三角形CEB相似于三角形AED因为AD/BC=ED/BEAD=4根3因为平行四边形adcfcf=ad=4根3第二问:连接fo,co因为af=cd=f

AB是圆O的直径

解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的

一个圆的几何证明题.AD是△ABC的高,以AD为直径作⊙O分别交AB,AC于点E,F.求证:AE/AF=AC/AB图:

怎么好像答案们不是很对啊……证明:过A点作⊙O的切线AM(M取在此线右侧)∵AD为⊙O的直径∴AM⊥AD(圆的切线垂直于过切点的直径)又∵AD⊥BC(已知)∴AM‖BC(一条直线的两条垂线互相平行)∴