ab是圆o的直径,ad是炫,作dc与ab的延长线交于点c,使角bdc等于角a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:46:18
过O点作PA的平行线,交BD于E,很容易得到OE=AD/2=a/2.假设圆的半径为R,那么PO=√5R,BC=PB.OB/PO=2R/√5所以OC=√(OB^2-BC^2)=R/√5,PC=PO-OC
延长BD交圆于E,连接AE,因为pb是切线所以pb垂直ab,又因为它们长度相等,所以这是一个等腰直角三角形,角apb=45度.因为ab是直径,所以角e是直角,又因为bc垂直po,po平行于ae,所以三
PD=8AD/PD=S△ACB/S△CPB=2*S△COB/S△CPB(O为AB的中点)=2*OC/CP这里直角三角形PBO两条直角边的比是1:2,所以上面这个比求出来是1:4所以AD/PD=1/2,
过D作DE⊥AB垂足EDE=AE=2√2BE=4√2AB=6√2AP=12PD=PA-AD=8再问:BE=4√2是怎么来的?再答:∵PB=AB∴∠A=45°再问:我也知道啊,求不出来啊...BD不知道
证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠
∵AB是直径,∴∠ACB=∠ADB=90°,cos∠CAB=AC/AB=1/2,∴∠CAB=60°,∵AC=AD=8,∴C、D分别在AB的异侧,∴∠CAD=120°.
EP/BC=AE/ABED/BC=AE/OB显而易见的可以看出ED=2EP哪里看不懂,可以继续问.
∵AB是圆O的直径又∵AC、AD是圆O的弦且直径AB平分AC、AD所成的夹角∠CAD(已知条件)连接CO、DO组成两三角形ACO、三角形ADO(只要证明两三三角形全等即可证明:AC=AD)证明:∵CO
证明:如图1,连接BC、BF因为AB是直径所以∠ACB=∠AFB=90°因为CD⊥AB所以∠ADC=∠ADG=90°所以∠ACB=∠ADC,∠AFB=∠ADG又因为∠CAD=∠BAC,∠DAG=∠FB
连接OD∵OA=OB=OD∴∠ODA=∠OAD∵AD平分∠BAC∴∠BAD=∠CAD即∠OAD=∠EAD=∠ODA∵DE⊥AC∴∠EAD+∠EDA=90°∴∠ODA+∠EDA=90°即∠EDO=90°
证明:在圆o中连接CO∵AO=CO∴∠OAC=∠OCA∵AC平分∠DAC∴∠DAC=∠OAC∴∠OCA=∠DAC∴AD∥OC∵CD为圆O的切线∴OC⊥DC∴AD⊥DC
证明:AO=DO,∠ADO=∠DAOAD‖OC,∠ADO=∠DOC,∠DAO=∠COB,∴∠DOC=∠COBDO=OB,OC=OC△DOC≌△BOC∠CDO=∠CBO=90CD是圆O切线
证明连接EF,交AD于G∵E,F分别是AB,AC的中点∴EF∥BC,GD=AD/2∵EF=AD∴GD=EF/2∵AD⊥BC∴AD⊥EF∴EF到BC的距离为EF/2∵直径为EF∴BC为圆O的切线再问:∵
连接OD,则只需证OD⊥CD即可因为AD//OC,所以∠DAO=∠COB,∠ADO=∠COD又因为OA=OD,∠DAO=∠ADO,则∠COB=∠COD又因为OD=OB,OC为公共边,则△OCD与△OB
(1)证明:∵四边形ABCD是等腰梯形,且AD∥BC,∴AB=CD,∠B=∠C;又∵CD是直径,点O是腰CD的中点,∴点O是圆心,∴OE=OC,∴∠OEC=∠C(等边对等角),∴∠OEC=∠B(等量代
我是最快的因为∠BCD=∠BAD,∠AED=∠CEB三角形CEB相似于三角形AED因为AD/BC=ED/BEAD=4根3因为平行四边形adcfcf=ad=4根3第二问:连接fo,co因为af=cd=f
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的
怎么好像答案们不是很对啊……证明:过A点作⊙O的切线AM(M取在此线右侧)∵AD为⊙O的直径∴AM⊥AD(圆的切线垂直于过切点的直径)又∵AD⊥BC(已知)∴AM‖BC(一条直线的两条垂线互相平行)∴