AB是圆O的直径,C是弧AB的中点,圆O的切线BD交AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:53:48
AB是圆O的直径,C是弧AB的中点,圆O的切线BD交AC
已知ab是圆o的直径 do垂直于ab于点o,cd是圆o切线,切点为c,求证角dce等于角dec

参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于点F

连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD

如图ab是圆o的直径c是弧bd的中点

木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三

如图 AB是圆O的直径 C是弧AD的中点…

证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠

已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆

解题思路:线面关系解题过程:见附件最终答案:略

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

AB是圆O的一条弦,点C为弧AB的中点,CD是圆O的直径,过点C的直线交圆于点F,交弦AB于点E

角CEB与角FDC相等因为点C为弧AB的中点,CD是圆O的直径所以CD垂直AB所以角CEB+角FCD=90度因为CD是圆O的直径所以角CFD=90度所以角FDC+角FCD=90度因为角CEB+角FCD

如图1,AB是圆O的一条弦,点C是弧AB的中点,CD是圆O的直径,过点C的直线l交AB所在直线于E,交圆O于F

(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.

如图AB是圆O的直径

解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

如图,AB是圆O的直径,C是弧BD的中点

(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O

AB是圆O的直径AD是弦,角DAB+22.5^,延长AB到点C,使得角ABCD=45^,求CD是圆O的切线.

(1)证明:连接DO,∵AO=DO,∴∠DAO=∠ADO=22.5°.∴∠DOC=45°.又∵∠ACD=2∠DAB,∴∠ACD=∠DOC=45°.∴∠ODC=90°.∴CD是⊙O的切线.连接DB,∵直

AB是圆O的直径AD是弦,角DAB+22.5^,延长AB到点C,使得角ABCD=45^,求CD是圆O的切线

证明:(1)连接DO∵AO=DO∴∠DAO=∠ADO=22.5°∴∠DOC=45°又∵∠ACD=2∠DAB∴∠ACD=∠DOC=45°∴∠ODC=90°∴CD是⊙O的切线

已知PA垂直与平面ABC,AB是圆o的直径,C是圆o上的任一点

AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC

AB是圆O的直径

解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的

ab是圆O的一条弦 过点O作AB的垂线,垂足为C,已知OC等于圆O直径的四分之一 求劣弧弧AB所对的圆周角的大小

连接OA,OB因为OC等于1/4的直径,则OC等于1/2的OA又因为OC垂直AB所以∠AOC=60度(勾股定理)因为∠AOB=2∠AOC所以∠AOB=120度因为∠AOB是劣弧AB所对的圆心角又因为同