APB=rt顶点P在直线b上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:01:13
同位角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90°,∴∠bPA=∠1 根据同位角相等,两直线平行,得a∥b内错角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90
同位角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90°,∴∠bPA=∠1 根据同位角相等,两直线平行,得a∥b内错角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90
同位角:∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90°,∴∠bPA=∠1根据同位角相等,两直线平行,得a∥b内错角:∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90°,∴∠bPA=∠1=∠
圆内任意弦的垂直平分线都过圆心△ABP的高是P到AB的距离易知P在AB垂直中线上时高为最大底边不边所以可求最大三角形面积△ABP是等边三角形cos(∠PAB+∠PBA)=cos(2∠PAB)=cos(
Rt△AOB,O(0,0),OA⊥OB,AB=5√3OA:y=2xk(OA)=2,k(OB)=-0.5,OB:y=-0.5xyA^2=2p*xA.(1)yA=2xA.(2)(1)/(2):yA=p,x
如图,分别以AC,BC为边,作等边△APC,等边△BP′C,连接BP,依题意,结合等边三角形的性质可知∠APB=∠AP′B=30°,所以满足条件的点P的个数为2个.故选B.
①若PQ//AB且 PQ=AB,由x-0=3-1得x=2 代入y=½ x得y=1 ∴Q1(
120度.∠C=90°,∠A=30°,∠B=60°显然BC再问:应该还可以是PA=ABAB=BP吧再答:!哦不好意思!看成在线段AC上了!如果是直线上,那就还有75和15和30
△CAD≌△BCE∵C点在直线DE上,∴∠DCA+∠ACB+∠BCE=180°又∠ACB=90°∴∠DCA+∠BCE=90°∵AD⊥DE∴∠DCA+∠CAD=90°∴∠BCE=∠CAD在Rt△CAD和
点P在X轴上,则P坐标是(0,k)直线PA斜率是:kpa=[k-(-5)]/[0-(-2)]=(k+5)/2直线PB斜率是:kpb=(k-6)/(0-6)=(k-6)/(-6)因为角APB是直角则kp
同位角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90°,∴∠bPA=∠1 根据同位角相等,两直线平行,得a∥b内错角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90
过l作b对称点b'(3,-1)连接AB'交L于PP(5/3,-1/3)
分析:连接AC,则∠AMB=∠ACB,根据三角形的外角大于不相邻的内角求解.设PB与圆交于点C,连接AC∵∠AMB=50°=∠ACB又∵∠ACB>∠APB,且∠APB=x°,∴50°>x°∴x的变化范
方法一:同位角相等,两直线平行,即 由∠1+∠2=90度,∠2+∠bPA=∠BPA=90度,得 ∠bPA=∠1 从而得 a∥b,方法二:内错角相等,两直线平行,即 由∠1+∠2=9
同位角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90°,∴∠bPA=∠1 根据同位角相等,两直线平行,得a∥b内错角: ∵∠1+∠2=90°,∠2+∠bPA=∠BPA=90
作点B‘(2,4)B与B’点关于y=x直线对称,连接AB‘与y=x直线交于P,此时的P点就是使丨PA丨+丨PB丨最小的P点.证明APB为直角三角形可以先由上得出P点坐标,知道了ABP三点的坐标然后证明
设PB与圆交于点C,连接AC (2分)∵∠AMB=50°=∠ACB又∵∠ACB>∠APB,且∠APB=x°,∴50°>x°,(4分)∴x的变化范围为0<x<50°.(2分)
证明:由∠APB=90°得AB为直径,∴∠ACB=90°.∵PC平分∠APB,交⊙O于点C.∴∠CPA=∠CPB.由同圆或等圆中圆周角相等则弦也相等,∴AC=BC,∴△ABC为等腰直角三角形.
设M(x,y),A(x1,y1),B(x2,y2)M是AB中点,则x=(x1+x2)/2y=(y1+y2)/2联立得4(x²+y²)=(x1+x2)²+(y1+y2)&s
p点坐标(x,0)因为AB^2=AP^2+BP^2所以(2-5)^2+(2+2)^2=(2-x)^2+(2-0)^2+(5-x)^2+(-2-0)^2x^2-7x+6=0所以x=1或x=6用AP乘以B