A²-3A 2E=0证明可对角化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:57:18
这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x
看看能看懂不? 特征值都为正负1 对应相乘之后都是1 那个不影响结果~
条件(A-aE)(A-bE)=0,其中ab不相等,则A可对角化.证明:当AB=0时有不等式r(A)+r(B)再问:原式怎么化解?具体步骤是什么?再答:x^2+x-1=0,解为a=[-1+根号(5)]/
设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A
只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)首先设λ是A的特征值,那么λ^2是A^2的特征值,∴(A^2)ξ=λ^2*ξ=Eξ=ξ∴λ^2=1∴λ=±1∴A只有特征根±
证明:设C是任意对角矩阵,且与A相似若B与A相似,根据相似具有传递性,即C则B与C相似,所以B可对角化再问:B与C相似所以B可对角化不是题目本身一个意思么只是把A换成了C?这样不算证明出来了吧...再
A^2=A;A(A-E)=0,r(A)+r(A-E)
设P^-1*A*P=JP^-1*A^2*P=P^-1*A*P*P^-1*A*P=J^2J是A的Jordan标准型要使J^2=J,则J一定是对角阵
A^2=A则A的特征值只能是0或1再由A(A-E)=0得r(A)+r(A-E)=n即知A有n个线性无关的特征向量故A可对角化
因为A^2=A所以A的特征值只能是0,1再由A(A-E)=0所以r(A)+r(A-E)再问:若rankA+rank(A-E)=n,如何证明A可对角化呢?再答:n-r(A)+n-r(A-E)=n所以A有
[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A
这是个与矩阵的特征值,对角化,矩阵的秩有关的综合题目用到多个知识点,好题!证明:(1)(A-aI)(A-bI)=A^2-(a+b)A+abI若λ是A的特征值则λ^2-(a+b)λ+ab是A^2-(a+
证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/
对称矩阵必可对角化.矩阵的特征多项式为(x-3)^2(x-1),特征值为3,3,1,三个特征值均大于0,为正定二次型
设A可对角化为B,这意味着存在相似变换矩阵S使得B=S[-1]AS所以S'A'S'[-1]=B'=B=S[-1]AS于是A'=S'[-1]S[-1]ASS'=(SS')[-1]ASS'即存在相似变换矩
设Q^(-1)AQ=D=diag(a1E,a2E,...,akE),其中a1,a2,...,ak是A的不同特征值,对应重数即为l1,l2,...,lk.在AB=BA中左乘Q^(-1),右乘Q得DQ^(
证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1
设P^-1*A*P=JP^-1*A^2*P=P^-1*A*P*P^-1*A*P=J^2J是A的Jordan标准型要使J^2=J,则J一定是对角阵
证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/