A为n*n阶矩阵,且A2-A-E=0,则(A-E)^-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:33:14
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
因为:A2=A,所以:A(A-E)=0,则:r(A)+r(A-E)≤n,又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,所以:r(A)+r(A-E)=n,则:r
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E
∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A
用性质,答案是-n.
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
把3个式子统一起来,写成矩阵形式:A*[a1a2a3]=[a1a2a3]*110011001记P=[a1a2a3],J=110011001(其实J就是一个特征值为1的三阶Jondan块).则有AP=P
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
可以的是R(A)+R(A-E)=n提示:A*(A-E)=0所以(A-E)是AX=0的解
正定的定义若X!=0则X'AX>0题目有误
因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]
两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决
(A)=n,说明矩阵A时可逆矩阵,因此A可以写成一系列初等矩阵的乘积,设A=p1*p2ps,相当于对矩阵A做了一系列的初等列变换,而初等列变换不改变矩阵的秩,因此r(A*A)=r(A)其实还可以简单点