A为n*n阶矩阵,且A2-A-E=0,则(A-E)^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:33:14
A为n*n阶矩阵,且A2-A-E=0,则(A-E)^-1
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

设A为n阶方阵,且A2=A,证明:若A的秩为r,则A-E的秩为n-r,其中E是n阶单位矩阵.

因为:A2=A,所以:A(A-E)=0,则:r(A)+r(A-E)≤n,又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,所以:r(A)+r(A-E)=n,则:r

设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)

设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)

已知n阶矩阵A满足A2-3A+2I=0,其中I是n阶单位矩阵,且A的特征值全为1,求证A=I

显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵

首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA

线性代数证明题A为n阶矩阵,a1,a2,a3是n维向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+

把3个式子统一起来,写成矩阵形式:A*[a1a2a3]=[a1a2a3]*110011001记P=[a1a2a3],J=110011001(其实J就是一个特征值为1的三阶Jondan块).则有AP=P

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]

因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]

设A为实数域上的n阶对称矩阵,且满足A2=0,求证:A=0

两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则(  )

(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决

证明对于n阶矩阵A,若R(A)=n,则R(A2)=n

(A)=n,说明矩阵A时可逆矩阵,因此A可以写成一系列初等矩阵的乘积,设A=p1*p2ps,相当于对矩阵A做了一系列的初等列变换,而初等列变换不改变矩阵的秩,因此r(A*A)=r(A)其实还可以简单点