a为n阶矩阵x为n为列向量,b为n阶方阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:38:55
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。
证明:必要性因为ABX=0与BX=0同解所以它们的基础解系所含向量的个数相同所以n-r(AB)=n-r(B)即有r(AB)=r(B).充分性.易知BX=0的解都是ABX=0的解而BX=0的基础解系含n
因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]
因为n=r(In)=r(AB)
你这个问题有一个证明方法就是证明A至少存在一个非零的特征值.假设A不存在一个非零的特征值,所有的特征值都是0,则A=0,矛盾,因此A至少存在一个非零的特征值,假设其对应的特征向量为X,那么XTAX就不
ab=ca=cb^(-1)a,c的列向量组能互相表示,故c的列向量组与a的列向量组等价再问:为什么不是ac的行向量组能相互表示呢?再答:那是不行的a=(a1,a2,...,an)^Tnx1矩阵如何右乘
分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'
AB^T的特征值为B^TA,0,0,...,0且由CA=AB^TA=(B^TA)A知A是C的属于特征值B^TA的特征向量.因为Q是正交矩阵所以B^Tqi=0所以Cqi=AB^Tqi=0所以q1,...
方程个数小于未知数个数,即n+1个n维向量,必有非0解
(1)必要性是显然的.因为既然ABX=0与BX=0已经同解,那它们的基础解系里的向量数当然应该相同,也就是说s-r(AB)=s-r(B)故r(AB)=r(B)(2)充分性就是要由“r(AB)=r(B)
||Px||=1,具体展开根据范数的定义再问:我只学过这个三个性质,但似乎都无法用来解这个题:⒈║x║≥0,且║x║=0x=0;⒉║cx║=│c│║x║;⒊║x+y║≤║x║+║y║。而且我这个教材上
设k1Aα1+k2Aα2+…+knAαn=0则A(k1α1+k2α2+…+knαn)=0因为A可逆,等式两边左乘A^-1,得k1α1+k2α2+…+knαn=0由已知α1,α2,…αn线性无关所以k1
证明:首先有r(B)>=r(AB)=r(I)=m而B只有m列,所以r(B)
证明:Ax=b有唯一解,那么r(A,b)=r(A)=n,而A为n阶矩阵,所以r(A)=n可以得到A可逆同理,n阶矩阵A可逆,那么r(A)=n,而增广矩阵r(A,b)显然此时等于r(A),所以r(A,b
考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方
n为偶数时:b1-b2+b3-b4+……-bn=0∴﹛b1,b2,……bn﹜线性相关.设k1b1+k2b2+……+k﹙n-1﹚b﹙n-1﹚=0即k1a1+﹙k1+k2﹚a2+﹙k2+k3﹚a3+……+
1.A是实矩阵时正确x满足A^TAx=0,则x^TA^TAx=0,即有(Ax)^T(Ax)=0,故有Ax=02.不对.不管A是否可逆,Ax=0时,(等式两边左乘A^T)都有A^TAx=0.
证明:设α为k维列向量,是CX=0的解,即有Cα=0.则ABα=0.(*)因为r(A)=n所以AX=0只有零解.由(*)知Bα=0.(**)又因为r(B)=k所以BX=0只有零解.由(**)知α=0.
因为,r(P)=1所以,P的最大线性无关向量组为α所以,P的行向量都可以用α表示所以,k1αk2αP=..knα如果向量B和α线性相关,则,存在数x使得B=xα(如果向量B和α线性无关,则该命题是不成